图像恢复介绍(持续更新)


前言

       噪声的产生是信号在采集、传输以及记录过程中,受到成像设备自身因素和外界环境的影响而产生的。现实中的噪声是随机分布的,事实上,噪声无法完全去除,只能使得重现信号尽可能的接近原始信号,因此,去噪严格意义上只能被称之为降噪。通过去噪可以有效地增大图像信号的信噪比,提高图像质量 ,更好地体现原始图像所携带的信息。

噪声的来源

        一幅图像在实际应用中可能存在着各种各样的噪声,噪声可能在传输中产生,也可能在量化等处理中产生。

      我们一般将噪声分为三类:加性噪声,乘性噪声和量化噪声。用f(x,y)表示给定图像,g(x,y)表示图像信号,n(x,y)表示噪声。

1.加性噪声,此类噪声与输入图像信号无关,含噪图像可表示为f(x, y)=g(x, y)+n(x, y),信道噪声及光导摄像管的摄像机扫描图像时产生的噪声就属这类噪声;

2.乘性噪声,此类噪声与图像信号有关,含噪图像可表示为f(x, y)=g(x, y)+n(x ,y)g(x, y),飞点扫描器扫描图像时的噪声,电视图像中的相干噪声,胶片中的颗粒噪声就属于此类噪声;

3.量化噪声,此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生。

 

常见噪声

高斯噪声泊松噪声
乘性噪声椒盐噪声

去噪模型

      高维数据去噪问题旨在从被噪声污染 ( 噪声位置未知 ) 的高维数据中复原出 真实的高质量数据。在去噪问题中,噪声的种类非常多,如高斯噪声、稀疏噪声、 泊松噪声以及未知分布类型的其他噪声。而主要考虑常见的高斯噪声、稀疏噪声以及它们的混合噪声,因此退化模型可以表示为

评价指标

MPSNR(峰值信噪比平均值,the mean of peak signal-to-noise rate)

  • PSNR>40dB 说明图像质量极好(即非常接近原始图像);
  • PSNR∈(30,40)dB通常表示图像质量是好的(即失真可以察觉但可以接受);
  • PSNR∈(20,30)dB说明图像质量差;
  • PSNR<20dB图像不可接受;

MSSIM(结构相似性平均值,the mean of structural similarity) 

 SSIM取值范围[-1,1],值越大,表示图像失真越小

SAM(光谱角映射角,the mean of spectral angle mapping)

      SAM把图像中的每个像元的光谱视为一个高维向量,通过计算两向量间的夹角来度量光谱间的相似性,夹角越小,两光谱越相似

 去噪方法

       根据降噪算法的类型,可以大致分为:空间域滤波、变换域阈值、随机场、统计模型、各向异性扩散方法、字典学习方法和混合方法,除此之外,其他主要的去噪方法包括空间自适应滤波器,各种统计估计器,随机分析,形态分析和有序统计。

空间域滤波

非局部滤波器

       NLM滤波器利用图像的相似特征去进行去噪,非局部滤波器可以理解利用参考块与选定块周围的两个patch之间的欧式距离。NLM算法是典型的点去噪方法,仅为单个点生成无噪声像素,参考像素邻域之间的相似性直接影响滤波器权值。NLM的性能太慢了,所以后续研究学者对其进行了加速设计。 

变换域滤波 

    包括傅里叶变换、快速傅里叶变换、离散余弦变换、小波变换等等。

     FT和DCT已广泛应用于图像去噪和减损压缩。虽然DCT的图像恢复过程更简单,但重建后的图像出现了块状人工现象,在保留图像的边缘特征和细节方面效果不好。与FT相关的主要缺点是它的基函数长,而多分辨率工具小波变换表现出稀疏性(非零系数的数量很少)。小波比傅里叶变换更受欢迎的主要原因是小波同时在空间和时间上提供局部定位,而傅里叶变换只在频率上进行局部定位。

      离散小波变换(Discrete Wavelet Transform)是将连续小波变换离散化而得到的一种数学工具,它构成一个平移和膨胀因子,从而以滑动窗口的方式将不同尺度的整个图像包含在内。小波变换的能量压缩特性,即图像中的大部分信息被编码在少数高值系数中,是小波变换得到广泛应用的主要原因之一。DWT使用了许多母小波,为信号分解提供了基函数。

      基于小波的去噪方法通常是将图像内容变换成不同分辨率、不同尺度的多个子带。较大的频率系数包含低频图像信息(近似级),高频子带存在噪声和细节。通过阈值处理可以去除较小系数的噪声,最后通过系数的空间逆变换恢复图像

张量分解方法

      高光谱影像同时拥有空间和光谱信息,其数据形式是一个三维立方体结构,因此可以采用张量分析的方法对高光谱影像进行有效地处理,这类方法的最大优势是能够较好地保持影像全局结构

t-SVD分解

       t-SVD分解将一个三阶张量分解成一个 f-对角张量和两个正交张量 U 和 V ,其具体数学表达式如下:

Tucker分解

       Tucker 分解将一个 N 阶张量 X 分解成一个 N 阶张量和 N 个矩阵,其具体数学表达式如下

 CP分解

CP分解就是将一个张量分解成多个单秩张量的和。例如,给定一个三阶张量X可以分解为 

 TT分解

       TT 分解在物理学中可以看作是开边界条件下的矩阵乘积态 (matrix product state, MPS) 分解TT 分解将一个 N 阶张量分解成两个矩阵以及 N 2 个三阶张量 。同时建立了每一个因子与它的下一个因子之间的多线性运算。TT分解的具体数学表达式如下:

TR分解

      TR 分解 将一个 N 阶张量 分解成 N 个三阶张量。换言之, TR 分解用两个三阶张量 替换了 TT 分解中位于两端的两个因子矩阵 ,并建立了这两个因子之间的多线性运算。 TR 分解的具体数学表达式如下:

 低秩矩阵恢复方法

      低秩矩阵恢复广泛用于图像处理用途图像恢复,比如去噪、去模糊等。一幅清晰的自然图像其数据矩阵往往是低秩或者近似低秩的,但存在随机幅值任意大但是分布稀疏的误差破坏了原有数据的低秩性。低秩矩阵恢复是将退化图像看做一组低维数据加上噪声形成的,因此退化前的数据就可以通过低秩矩阵来逼近

      低秩矩阵恢复首先将高光谱图像划分为全波段的 3D 图像块,然后将每一个 3D 图像块沿着光谱方向展开成矩阵形式,最后通过促进展开矩阵的低秩性来去除混合噪声

子空间先验方法

    HSI具有低秩特性,子空间方法是一种降维技术,可以充分考虑空间-光谱相关性,核心思想是通过子空间分解来表示 数据,通过将高光谱数据映射到更低维度的子空间,减少冗余信息,提取重要特征,并加快恢复算法的速度

模型方法 

采用光谱 - 空间自适应总变差模型的高光谱图像去噪(SSAHTV)

       SSAHTV去噪算法既考虑了不同波段间噪声强度的差异,自动调整各波段的去噪强度,又考虑了不同像素点之间的空间特性差异。根据空间结构分布,在同一波段内不同像素位置调整去噪强度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值