RTDETR融合[AAAI2025]的PConv模块


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection

一、 模块介绍

        论文链接:https://arxiv.org/abs/2412.16986

        代码链接:https://github.com/JN-Yang/PConv-SDloss-Data

论文速览:

        近年来,基于卷积神经网络 (CNN) 的红外小目标检测方法取得了出色的性能。然而,这些方法通常采用标准卷积,而忽略了考虑红外小目标像素分布的空间特性。因此,我们提出了一种新的风车形卷积 (PConv) 来替代骨干网络下层的标准卷积。PConv 更好地与暗淡小目标的像素高斯空间分布对齐,增强了特征提取,显著增加了感受野,并且仅引入了最小的参数增加。此外,虽然最近的损失函数结合了尺度和位置损失,但它们没有充分考虑这些损失在不同目标尺度上的不同灵敏度,从而限制了对微小目标的检测性能。为了克服这个问题,我们提出了一种基于尺度的动态 (SD) 损失,它根据目标大小动态调整尺度和位置损失的影响,从而提高网络检测不同尺度目标的能力。

总结:本文演示文中的PConv的使用方法。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

RT-DETR更新汇总贴(含免费教程)文章浏览阅读264次。RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:_rt-deter https://xy2668825911.blog.csdn.net/article/details/143696113

二、二创融合模块

2.1 相关二创模块及所需参数

        该模块无二创模块。

# _____________________________________ PConv2 ___________________________#
# Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection
class PConv2(nn.Module):
    ''' Pinwheel-shaped Convolution using the Asymmetric Padding method. '''

    def __init__(self, c1, c2, k=3, s=1):
        super().__init__()

        # self.k = k
        p = [(k, 0, 1, 0), (0, k, 0, 1), (0, 1, k, 0), (1, 0, 0, k)]
        self.pad = [nn.ZeroPad2d(padding=(p[g])) for g in range(4)]
        self.cw = Conv(c1, c2 // 4, (1, k), s=s, p=0)
        self.ch = Conv(c1, c2 // 4, (k, 1), s=s, p=0)
        self.cat = Conv(c2, c2, 2, s=1, p=0)

    def forward(self, x):
        yw0 = self.cw(self.pad[0](x))
        yw1 = self.cw(self.pad[1](x))
        yh0 = self.ch(self.pad[2](x))
        yh1 = self.ch(self.pad[3](x))
        return self.cat(torch.cat([yw0, yw1, yh0, yh1], dim=1))

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

backbone:
  # [from, repeats, module, args]
  - [-1, 1, PConv2, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, CCRI, [128, 3]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 4, CCRI, [256, 3, True, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, CCRI, [512, 3, True, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, CCRI, [1024, 3, True, False]]

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]] # cat Y4
  - [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 11], 1, Concat, [1]] # cat Y5
  - [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐


 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。


### 关于 AAAI 2025 的会议论文日程 目前尚未有具体公开的 AAAI 2025 论文日程安排信息,因为该年份的会议通常会在前一年或更早时间才发布详细的计划和接受的论文列表[^1]。然而,可以参考以往的 AAAI 大会模式来推测其可能的日程结构。 #### 常规流程概述 AAAI(The Association for the Advancement of Artificial Intelligence)大会一般分为以下几个部分: - **提交截止日期**:通常在前一年的夏季至秋季之间公布论文提交的时间窗口。 - **通知作者阶段**:评审完成后,大约在当年年底之前向作者发送录用结果的通知。 - **最终版本提交**:被录取的论文需按照指定模板完成修改并重新提交。 - **电子材料准备**:类似于 COLING 2022 中提到的内容,在正式召开前数周准备好所有预印本供参会者查阅[^2]。 对于具体的论文展示环节而言,以下是常见的组成部分: - 口头报告(Oral Presentations) - 海报张贴(Poster Sessions) 考虑到 ICLR 2019 曾经特别关注过对抗样本等领域研究趋势的情况[^3],预计未来几年内的顶级人工智能学术论坛也会继续围绕这些热点展开深入探讨;而 ECCV 和 ICML 则分别代表计算机视觉以及机器学习方向上的高水平成果交流平台[^4]。 尽管现在还没有确切消息表明哪些主题将成为明年重点讨论对象之一 ,但基于过去几年的发展轨迹来看,“大模型”、“多模态融合技术应用进展”,还有“强化学习新算法探索”等方面很可能会成为重要议题。 ```python # 示例代码用于说明如何查询特定网站获取最新动态(仅作为演示用途) import requests from bs4 import BeautifulSoup def fetch_conference_info(url): response = requests.get(url) soup = BeautifulSoup(response.text,"html.parser") titles=soup.find_all('h2') # Assuming h2 tags contain relevant info like schedules etc. return [title.string.strip() for title in titles] conference_url="http://www.aaai.org/" # Replace with actual URL when available closer to event date print(fetch_conference_info(conference_url)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值