模型运行速度FPS测试以及参数Parameter计算代码

该博客介绍了如何计算深度学习模型的运行速度(FPS)以及模型参数的大小。使用Python的time模块记录模型推理时间,计算平均、最快和最慢的推理速度。同时,通过两种不同的方法(直接计算和使用thop库)来估算模型参数数量,为模型优化和资源管理提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型FPS速度计算

import time
import torch
import numpy as np

net = build_your_net
net.eval()

# x是输入图片的大小
x = torch.zeros((1,3,H,W)).cuda()
t_all = []

for i in range(100):
    t1 = time.time()
    y = net(x)
    t2 = time.time()
    t_all.append(t2 - t1)

print('average time:', np.mean(t_all) / 1)
print('average fps:',1 / np.mean(t_all))

print('fastest time:', min(t_all) / 1)
print('fastest fps:',1 / min(t_all))

print('slowest time:', max(t_all) / 1)
print('slowest fps:',1 / max(t_all))

模型参数计算1

import numpy as np

def modelsize(model,type_size=4):
    para = sum([np.prod(list(p.size())) for p in model.parameters()])
    print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))

net = build_your_model
modelsize(net)

模型参数计算2

采用thop库,通过
pip install thop

from thop import profile
total_ops,total_params = profile(your_net, (data,), verbose = False)
print("| %.2f | %.2f " % (total_params/(1000*2),total_ops / (1000*3)))

YOLOv8(You Only Look Once version 8)是YOLO系列的目标检测算法的最新版本,旨在提高检测速度和准确性。FPS(Frames Per Second)是指每秒钟可以处理的帧数,它衡量了一个视频处理模型或实时系统处理数据的能力,对于目标检测模型来说,FPS通常是衡量模型性能的一个重要指标,因为它直接关系到模型是否能够实时运行。 要计算YOLOv8模型FPS,你需要记录模型在处理一批图像时所用的时间,并计算这一批图像的平均处理时间。以下是一个计算FPS代码示例,假设我们使用Python语言,并且已经有了一个YOLOv8模型实例 `model` 和一个图像批次 `images`。 ```python import time def calculate_fps(model, images): # 记录开始时间 start_time = time.time() # 假设 `images` 是一个图像批次,这里的代码可能包括预处理等步骤 # 预处理图像批次 (如果需要) # preprocessed_images = preprocess_images(images) # 用模型进行推理,这里使用模型的 `forward` 方法或等效方法 # detections = model.forward(preprocessed_images) # 记录结束时间 end_time = time.time() # 计算处理一批图像的总时间 total_time = end_time - start_time # 计算每秒可以处理的帧数(FPSfps = len(images) / total_time return fps # 假设我们有一批图像 images = [...] # 这里应该是加载的一批图像数据 # 计算模型FPS model_fps = calculate_fps(model, images) print(f"Model FPS: {model_fps}") ``` 请注意,实际使用时,你需要根据具体的模型API和框架进行适当的调整,例如,如果模型是用PyTorch框架实现的,你可能需要使用`model.eval()`在评估模式下运行模型,并且可能需要进行一些其他的设置。 此外,要注意的是,模型FPS在不同的硬件和软件环境下会有所变化,因此测试时应该尽量在目标运行环境中进行。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值