1.一开始怀疑keras那边没有,调用GPU进行测试
但是只要我们代码里面或者输入的语句有用到 CUDA_VISIBLE_DEVICES = xxx 网络本身就会调用GPU.
2.model.train() 和 model.eval()
https://blog.csdn.net/Z_lbj/article/details/79672888
主要是针对model 在训练时和评价时不同的 Batch Normalization 和 Dropout 方法模式。
https://blog.csdn.net/jinxin521125/article/details/78435899
eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
https://zhuanlan.zhihu.com/p/26893755
model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的
经过测试发现:不带eval()的效果非常差,一开始的mAP只有41%, 而带上的话测试的mAP开始有5