模型的训练和测试--如何加快速度

本文探讨了在Keras中如何利用GPU进行模型训练,并详细解释了在PyTorch中model.train()和model.eval()的区别,强调了它们在Batch Normalization和Dropout操作上的不同影响。此外,还介绍了MaxPooling和卷积层的计算公式,帮助理解输出尺寸的确定方法。
摘要由CSDN通过智能技术生成

1.一开始怀疑keras那边没有,调用GPU进行测试

但是只要我们代码里面或者输入的语句有用到 CUDA_VISIBLE_DEVICES = xxx 网络本身就会调用GPU.

2.model.train() 和 model.eval()

https://blog.csdn.net/Z_lbj/article/details/79672888

主要是针对model 在训练时和评价时不同的 Batch Normalization 和 Dropout 方法模式。

https://blog.csdn.net/jinxin521125/article/details/78435899

eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。

不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。

https://zhuanlan.zhihu.com/p/26893755

model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的

经过测试发现:不带eval()的效果非常差,一开始的mAP只有41%, 而带上的话测试的mAP开始有5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值