目录
1.写在前面
我们接着看一下凸优化问题,或者说强对偶关系,上一篇文章我们介绍了几何意义,对偶关系在几何表达上的样子。对于任意一个凸优化问题,并不能直接说满足强对偶关系,但是弱对偶关系肯定是可以满足的。我们说凸优化+一定的限制条件可以推出强对偶关系。其中slater条件就是其中一个,但是这个属于充分非必要条件,一个满足强对偶关系的函数不一定是满足slater条件的。
2.slater条件是什么?
slater条件非常简单,我们可以先看定义:,换句话说,relint是相对内部的概念,relative interior。如果D有边界,相对内部就是指把边界去掉的内部,如果没有边界,那相对内部就是其本身。另外我们还需要着重说下面几点:
- 对于大多数凸优化问题,通常情况下slater是成立的,当然我们也可以构造一个凸优化不满足slater条件。
- 放松slater条件,如果M个不等式约束中,如果有一部分满足
,
是仿射函数,仿射函数是简单函数,就是一节多项式函数,和线性函数有关系。也就是如果M中K个仿射函数,则这K个仿射函数不必校验,直接校验剩下的M-K个函数。
我们为什么讲到上面那一堆呢,因为如果我们的问题是凸二次规划问题,就是目标函数f是凸优化的,不等式约束是仿射函数。nj本身也是仿射函数,天然满足slater条件。我们的SVM问题本质上就是一个凸二次规划问题,也就是说SVM凸优化问题默认强对偶关系一定是成立的。
3.slater条件在几何上
slater条件在几何上是什么意思呢?至少存在一个点,使得约束条件小于0。假设只有一个约束条件m1,也就是说存在一个点,使得m1小于0,m1我们上篇文章指代了u,也就是坐标轴的横轴,表示在G范围内在u<0地方一定存在一个点。这个东西是对G集合进行限制的。G必须在u<0坐标轴左半边一定要有点存在。从而限定了绿色的那条切线不能是垂直的,这就是slater条件在几何层面表达的含义。