手推支持向量机07-约束优化问题-对偶关系之slater condition的解释

本文深入探讨了Slater条件在凸优化问题中的应用,解释了其几何意义,即至少存在一个点使约束条件小于0,强调了Slater条件作为强对偶关系的充分非必要条件的角色。特别地,对于凸二次规划问题,如SVM,Slater条件自然满足,确保了强对偶关系的成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.写在前面

2.slater条件是什么?

3.slater条件在几何上


1.写在前面

        我们接着看一下凸优化问题,或者说强对偶关系,上一篇文章我们介绍了几何意义,对偶关系在几何表达上的样子。对于任意一个凸优化问题,并不能直接说满足强对偶关系,但是弱对偶关系肯定是可以满足的。我们说凸优化+一定的限制条件可以推出强对偶关系。其中slater条件就是其中一个,但是这个属于充分非必要条件,一个满足强对偶关系的函数不一定是满足slater条件的

2.slater条件是什么?

        slater条件非常简单,我们可以先看定义:\exists \hat{x}\varepsilon relintD,s.t. \forall i=1,...,M,m_{i}\left ( \hat{x} \right )< 0,换句话说,relint是相对内部的概念,relative interior。如果D有边界,相对内部就是指把边界去掉的内部,如果没有边界,那相对内部就是其本身。另外我们还需要着重说下面几点:

  1. 对于大多数凸优化问题,通常情况下slater是成立的,当然我们也可以构造一个凸优化不满足slater条件。
  2. 放松slater条件,如果M个不等式约束中,如果有一部分满足m_{i}\left ( \hat{x} \right )< 0m_{i}\left ( \hat{x} \right )是仿射函数,仿射函数是简单函数,就是一节多项式函数,和线性函数有关系。也就是如果M中K个仿射函数,则这K个仿射函数不必校验,直接校验剩下的M-K个函数。

        我们为什么讲到上面那一堆呢,因为如果我们的问题是凸二次规划问题,就是目标函数f是凸优化的,不等式约束m_{i}\left ( \hat{x} \right )是仿射函数。nj本身也是仿射函数,天然满足slater条件。我们的SVM问题本质上就是一个凸二次规划问题,也就是说SVM凸优化问题默认强对偶关系一定是成立的

3.slater条件在几何上

        slater条件在几何上是什么意思呢?至少存在一个点,使得约束条件小于0。假设只有一个约束条件m1,也就是说存在一个点,使得m1小于0,m1我们上篇文章指代了u,也就是坐标轴的横轴,表示在G范围内在u<0地方一定存在一个点。这个东西是对G集合进行限制的。G必须在u<0坐标轴左半边一定要有点存在。从而限定了绿色的那条切线不能是垂直的,这就是slater条件在几何层面表达的含义

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值