0.导语
拉氏域(s域)下对作Park变换的结果如何?一种想当然的错误:
注意:Park变换是在时域(t域)下进行的,不能直接在s域下直接计算。正确作法是,先在t域进行Park变换,再进行拉氏变换。
Park变换是abc静止坐标系到dq旋转坐标系的坐标变换,其变换形式有很多种,其中最为常见一种变换情形是:t=0时,d轴与a轴重合,且q轴超前d轴90°。此情形下对应的变换矩阵为:
其中,F为电气物理量,如电压u、电流i等等。记微分算子p=d/dt,讨论以下情况:
1.一阶微分Park变换的矩阵形式
注:http://t.csdn.cn/xFwef派克变换(对导数)http://t.csdn.cn/xFwef,这篇文章对此已有相关介绍,这里加入自己的一些理解。
我们知道代数上的乘法导数运算:p(A*B)=(pA)B+A(pB) (乘积的导数),实际上A、B是矩阵同样满足上述运算(可以用两个二阶矩阵验证一下)。因此,A(pB)=p(A*B)-(pA)B,那么:
2.二阶微分Park变换的矩阵形式
类似的,p(p(A*B))=p[(pA)B+A(pB)]=(ppA)B+2(pA)(pB)+A(ppB),可得A(ppB)=p(p(A*B))-(ppA)B-2(pA)(pB),因此
由第一部分的讨论可知:
联立可得:
3.总结
4.应用场景
LC滤波的逆变器满足:
进行Park变换:
进行Laplace变换
可见应用微分算子Park变换的矩阵形式可以简化变换过程,使得形式简单便于分析。
5.拓展:积分的Park变换的矩阵形式
随便举个例子,假设各变量i'labc(t)、ilabc(t)、vcabc(t)初始值均为0
也就是说: