微分/积分Park变换的矩阵等价形式

文章介绍了Park变换,即从abc静止坐标系到dq旋转坐标系的转换,特别是在t=0时,d轴与a轴重合,q轴超前d轴90°的情况。讨论了一阶和二阶微分的Park变换矩阵形式,并指出这些形式在简化LC滤波逆变器分析中的应用。通过Laplace变换进一步阐述了其在电气系统分析中的重要性。
摘要由CSDN通过智能技术生成

        0.导语

        拉氏域(s域)下对sF_{abc}(s)作Park变换的结果如何?一种想当然的错误

Park\left\{ sF_{abc}\left( s \right) \right\} =sF_{dq}\left( s \right)

        注意:Park变换是在时域(t域)下进行的,不能直接在s域下直接计算。正确作法是,先在t域进行Park变换,再进行拉氏变换。

        Park变换是abc静止坐标系到dq旋转坐标系的坐标变换,其变换形式有很多种,其中最为常见一种变换情形是:t=0时,d轴与a轴重合,且q轴超前d轴90°。此情形下对应的变换矩阵为:

T=\frac{2}{3}\left[ \begin{matrix} \cos \theta& \cos\mathrm{(}\theta -2\pi /3)& \cos\mathrm{(}\theta +2\pi /3)\\ -\sin \theta& -\sin\mathrm{(}\theta -2\pi /3)& -\sin\mathrm{(}\theta +2\pi /3)\\ 1/2& 1/2& 1/2\\ \end{matrix} \right]

F_{\mathrm{dq}0}=T*F_{\mathrm{abc}}

        其中,F为电气物理量,如电压u、电流i等等。记微分算子p=d/dt,讨论以下情况:

        1.一阶微分Park变换的矩阵形式

        注:http://t.csdn.cn/xFwef派克变换(对导数)http://t.csdn.cn/xFwef,这篇文章对此已有相关介绍,这里加入自己的一些理解。

        我们知道代数上的乘法导数运算:p(A*B)=(pA)B+A(pB) (乘积的导数),实际上A、B是矩阵同样满足上述运算(可以用两个二阶矩阵验证一下)。因此,A(pB)=p(A*B)-(pA)B,那么:

        2.二阶微分Park变换的矩阵形式

        类似的,p(p(A*B))=p[(pA)B+A(pB)]=(ppA)B+2(pA)(pB)+A(ppB),可得A(ppB)=p(p(A*B))-(ppA)B-2(pA)(pB),因此

        由第一部分的讨论可知:

        联立可得:

         3.总结 

         4.应用场景

        LC滤波的逆变器满足:

         进行Park变换:

        进行Laplace变换 

         可见应用微分算子Park变换的矩阵形式可以简化变换过程,使得形式简单便于分析。

        5.拓展:积分的Park变换的矩阵形式

        随便举个例子,假设各变量i'labc(t)、ilabc(t)、vcabc(t)初始值均为0

        也就是说:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值