一、简介
这里简单介绍了方差分析,如果通过方差分析,我们接受了原假设,那么说明因子 A A A的 a a a个水平 μ 1 , ⋯ , μ a \mu_1, \cdots, \mu_a μ1,⋯,μa没有显著性差异;如果我们拒绝了原假设,说明因子 A A A的 a a a个水平 μ 1 , ⋯ , μ a \mu_1, \cdots, \mu_a μ1,⋯,μa之间有显著差异,也就是说 μ 1 , ⋯ , μ a \mu_1, \cdots, \mu_a μ1,⋯,μa不完全相等,这时我们需要进一步判断水平 μ 1 , ⋯ , μ a \mu_1, \cdots, \mu_a μ1,⋯,μa之间的关系,可以两两进行 t t t检验,也可以用下面的方法。
二、区间估计
2.1 普通区间估计
根据这里的介绍,我们知道
y
ˉ
i
⋅
\bar y_{i\cdot}
yˉi⋅是总体
N
(
μ
i
,
σ
2
)
N(\mu_i, \sigma^2)
N(μi,σ2)的
n
i
n_i
ni个样本的均值,根据正态总体样本均值的性质可知:
y
ˉ
i
⋅
∼
N
(
μ
i
,
σ
2
n
i
)
,
i
=
1
,
2
,
⋯
,
a
(1)
\bar y_{i\cdot}\sim N(\mu_i, \frac{\sigma^2}{n_i}), i = 1, 2, \cdots, a\tag1
yˉi⋅∼N(μi,niσ2),i=1,2,⋯,a(1)
并且
y
ˉ
i
⋅
\bar y_{i\cdot}
yˉi⋅与
y
ˉ
j
⋅
(
i
≠
j
)
\bar y_{j\cdot}(i \ne j)
yˉj⋅(i=j)相互独立,所以有
y
ˉ
i
⋅
−
y
ˉ
i
⋅
∼
N
(
μ
i
−
μ
j
,
(
1
n
i
+
1
n
j
)
σ
2
)
(2)
\bar y_{i\cdot}-\bar y_{i\cdot}\sim N(\mu_i-\mu_j, (\frac{1}{n_i}+\frac{1}{n_j})\sigma^2)\tag2
yˉi⋅−yˉi⋅∼N(μi−μj,(ni1+nj1)σ2)(2)
进而有
U
=
(
y
ˉ
i
⋅
−
y
ˉ
i
⋅
)
−
(
μ
i
−
μ
j
)
σ
1
n
i
+
1
n
j
∼
N
(
0
,
1
)
(3)
U=\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim N(0, 1)\tag3
U=σni1+nj1(yˉi⋅−yˉi⋅)−(μi−μj)∼N(0,1)(3)
记 σ ^ 2 = S e 2 n − a \hat{\sigma}^2 = \frac{S_e^2}{n-a} σ^2=n−aSe2,则根据这里的证明,可知 ( n − a ) σ ^ 2 σ 2 = S e 2 σ 2 ∼ χ n − a 2 (4) \frac{(n-a)\hat{\sigma}^2}{\sigma^2}=\frac{S_e^2}{\sigma^2}\sim \chi_{n-a}^2\tag4 σ2(n−a)σ^2=σ2Se2∼χn−a2(4)。
结合正态总体的样本均值与样本方差的独立性可知, U U U与 σ ^ 2 \hat{\sigma}^2 σ^2独立,所以根据 ( 3 ) (3) (3)和 ( 4 ) (4) (4),可知 ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∼ t n − a (5) \frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim t_{n-a}\tag5 σ^ni1+nj1(yˉi⋅−yˉi⋅)−(μi−μj)∼tn−a(5)
那么对于给定的 α \alpha α,随机事件 ∣ ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∣ ≤ t n − a ( 1 − α 2 ) (6) |\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}|\le t_{n-a}(1-\frac{\alpha}{2})\tag6 ∣σ^ni1+nj1(yˉi⋅−yˉi⋅)−(μi−μj)∣≤tn−a(1−2α)(6)发生的概率为 1 − α 1-\alpha 1−α,因此对固定的 i , j , μ i − μ j i, j, \mu_i - \mu_j i,j,μi−μj的置信系数 1 − α 1-\alpha 1−α的置信区间为 [ ( y ˉ i ⋅ − y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) , ( y ˉ i ⋅ + y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) ] (7) [(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2})]\tag7 [(yˉi⋅−yˉi⋅)−σ^ni1+nj1tn−a(1−2α),(yˉi⋅+yˉi⋅)−σ^ni1+nj1tn−a(1−2α)](7)
如果这个区间包含
0
0
0,则表明我们可以以概率
1
−
α
1-\alpha
1−α断言
μ
i
\mu_i
μi与
μ
j
\mu_j
μj没有显著性差异;如果这个区间落在
0
0
0的左边,则表明我们以概率
1
−
α
1-\alpha
1−α小于
μ
i
\mu_i
μi与
μ
j
\mu_j
μj;如果这个区间落在
0
0
0的右边,则表明我们以概率
1
−
α
1-\alpha
1−α大于
μ
i
\mu_i
μi与
μ
j
\mu_j
μj
2.2 变型区间估计
对于每一对固定的
i
i
i和
j
j
j,我们用
(
7
)
(7)
(7)构造出置信系数为
1
−
α
1-\alpha
1−α的置信区间。但对于多个这样的置信区间,它们联合起来的置信系数就不再是
1
−
α
1-\alpha
1−α,因为下面的Bonferroni不等式:
假设
E
i
,
i
=
1
,
⋯
,
m
E_i, i = 1, \cdots, m
Ei,i=1,⋯,m为
m
m
m个随机事件,
P
(
E
i
)
=
1
−
α
,
i
=
1
,
⋯
,
m
P(E_i)=1-\alpha, i = 1, \cdots, m
P(Ei)=1−α,i=1,⋯,m,则
P
(
⋂
i
=
1
m
E
i
)
=
1
−
P
(
⋂
i
=
1
m
E
i
)
‾
=
1
−
P
(
⋃
i
=
1
m
E
i
ˉ
)
≥
1
−
∑
i
=
1
m
P
(
E
i
ˉ
)
=
1
−
m
α
P(\bigcap_{i=1}^{m}E_i)=1-P(\overline{\bigcap_{i=1}^mE_i)} = 1-P(\bigcup_{i=1}^m\bar{E_i})\ge1-\sum_{i=1}^mP(\bar{E_i})=1-m\alpha
P(i=1⋂mEi)=1−P(i=1⋂mEi)=1−P(i=1⋃mEiˉ)≥1−i=1∑mP(Eiˉ)=1−mα
即
P
(
⋂
i
=
1
m
E
i
)
≥
1
−
m
α
(8)
P(\bigcap_{i=1}^{m}E_i)\ge1-m\alpha\tag8
P(i=1⋂mEi)≥1−mα(8)
(
8
)
(8)
(8)就是著名的Bonferroni不等式,据此我们可以得到,
m
m
m个事件,若每个单独发生的概率为
1
−
α
1-\alpha
1−α,那么它们同时发生的概率不再是
1
−
α
1-\alpha
1−α,而是大于等于
1
−
m
α
1-m\alpha
1−mα,可能比
1
−
α
1-\alpha
1−α小的多。
为了使它们同时发生的概率为
1
−
α
1-\alpha
1−α,可以将每个事件发生的概率提高到
1
−
α
m
1-\frac{\alpha}{m}
1−mα,即
P
(
E
i
)
=
1
−
α
m
,
i
=
1
,
⋯
,
m
P(E_i)=1-\frac{\alpha}{m}, i = 1, \cdots, m
P(Ei)=1−mα,i=1,⋯,m,此时则有
P
(
⋂
i
=
1
m
E
i
)
≥
1
−
α
P(\bigcap_{i=1}^{m}E_i)\ge1-\alpha
P(⋂i=1mEi)≥1−α。按照这个思想,我们可以得到
(
7
)
(7)
(7)的变型为
[
(
y
ˉ
i
⋅
−
y
ˉ
i
⋅
)
−
σ
^
1
n
i
+
1
n
j
t
n
−
a
(
1
−
α
2
m
)
,
(
y
ˉ
i
⋅
+
y
ˉ
i
⋅
)
−
σ
^
1
n
i
+
1
n
j
t
n
−
a
(
1
−
α
2
m
)
]
(9)
[(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m})]\tag9
[(yˉi⋅−yˉi⋅)−σ^ni1+nj1tn−a(1−2mα),(yˉi⋅+yˉi⋅)−σ^ni1+nj1tn−a(1−2mα)](9)