方差分析——联立区间估计

一、简介

这里简单介绍了方差分析,如果通过方差分析,我们接受了原假设,那么说明因子 A A A a a a个水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa没有显著性差异;如果我们拒绝了原假设,说明因子 A A A a a a个水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa之间有显著差异,也就是说 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa不完全相等,这时我们需要进一步判断水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa之间的关系,可以两两进行 t t t检验,也可以用下面的方法。

二、区间估计

2.1 普通区间估计

 根据这里的介绍,我们知道 y ˉ i ⋅ \bar y_{i\cdot} yˉi是总体 N ( μ i , σ 2 ) N(\mu_i, \sigma^2) N(μi,σ2) n i n_i ni个样本的均值,根据正态总体样本均值的性质可知: y ˉ i ⋅ ∼ N ( μ i , σ 2 n i ) , i = 1 , 2 , ⋯   , a (1) \bar y_{i\cdot}\sim N(\mu_i, \frac{\sigma^2}{n_i}), i = 1, 2, \cdots, a\tag1 yˉiN(μi,niσ2),i=1,2,,a(1)
并且 y ˉ i ⋅ \bar y_{i\cdot} yˉi y ˉ j ⋅ ( i ≠ j ) \bar y_{j\cdot}(i \ne j) yˉj(i=j)相互独立,所以有 y ˉ i ⋅ − y ˉ i ⋅ ∼ N ( μ i − μ j , ( 1 n i + 1 n j ) σ 2 ) (2) \bar y_{i\cdot}-\bar y_{i\cdot}\sim N(\mu_i-\mu_j, (\frac{1}{n_i}+\frac{1}{n_j})\sigma^2)\tag2 yˉiyˉiN(μiμj,(ni1+nj1)σ2)(2)
进而有 U = ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ 1 n i + 1 n j ∼ N ( 0 , 1 ) (3) U=\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim N(0, 1)\tag3 U=σni1+nj1 (yˉiyˉi)(μiμj)N(0,1)(3)

σ ^ 2 = S e 2 n − a \hat{\sigma}^2 = \frac{S_e^2}{n-a} σ^2=naSe2,则根据这里的证明,可知 ( n − a ) σ ^ 2 σ 2 = S e 2 σ 2 ∼ χ n − a 2 (4) \frac{(n-a)\hat{\sigma}^2}{\sigma^2}=\frac{S_e^2}{\sigma^2}\sim \chi_{n-a}^2\tag4 σ2(na)σ^2=σ2Se2χna2(4)

结合正态总体的样本均值与样本方差的独立性可知, U U U σ ^ 2 \hat{\sigma}^2 σ^2独立,所以根据 ( 3 ) (3) (3) ( 4 ) (4) (4),可知 ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∼ t n − a (5) \frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim t_{n-a}\tag5 σ^ni1+nj1 (yˉiyˉi)(μiμj)tna(5)

那么对于给定的 α \alpha α,随机事件 ∣ ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∣ ≤ t n − a ( 1 − α 2 ) (6) |\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}|\le t_{n-a}(1-\frac{\alpha}{2})\tag6 σ^ni1+nj1 (yˉiyˉi)(μiμj)tna(12α)(6)发生的概率为 1 − α 1-\alpha 1α,因此对固定的 i , j , μ i − μ j i, j, \mu_i - \mu_j i,j,μiμj的置信系数 1 − α 1-\alpha 1α的置信区间为 [ ( y ˉ i ⋅ − y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) , ( y ˉ i ⋅ + y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) ] (7) [(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2})]\tag7 [(yˉiyˉi)σ^ni1+nj1 tna(12α),(yˉi+yˉi)σ^ni1+nj1 tna(12α)](7)

 如果这个区间包含 0 0 0,则表明我们可以以概率 1 − α 1-\alpha 1α断言 μ i \mu_i μi μ j \mu_j μj没有显著性差异;如果这个区间落在 0 0 0的左边,则表明我们以概率 1 − α 1-\alpha 1α小于 μ i \mu_i μi μ j \mu_j μj;如果这个区间落在 0 0 0的右边,则表明我们以概率 1 − α 1-\alpha 1α大于 μ i \mu_i μi μ j \mu_j μj

2.2 变型区间估计

 对于每一对固定的 i i i j j j,我们用 ( 7 ) (7) (7)构造出置信系数为 1 − α 1-\alpha 1α的置信区间。但对于多个这样的置信区间,它们联合起来的置信系数就不再是 1 − α 1-\alpha 1α,因为下面的Bonferroni不等式
 假设 E i , i = 1 , ⋯   , m E_i, i = 1, \cdots, m Ei,i=1,,m m m m个随机事件, P ( E i ) = 1 − α , i = 1 , ⋯   , m P(E_i)=1-\alpha, i = 1, \cdots, m P(Ei)=1α,i=1,,m,则 P ( ⋂ i = 1 m E i ) = 1 − P ( ⋂ i = 1 m E i ) ‾ = 1 − P ( ⋃ i = 1 m E i ˉ ) ≥ 1 − ∑ i = 1 m P ( E i ˉ ) = 1 − m α P(\bigcap_{i=1}^{m}E_i)=1-P(\overline{\bigcap_{i=1}^mE_i)} = 1-P(\bigcup_{i=1}^m\bar{E_i})\ge1-\sum_{i=1}^mP(\bar{E_i})=1-m\alpha P(i=1mEi)=1P(i=1mEi)=1P(i=1mEiˉ)1i=1mP(Eiˉ)=1mα
P ( ⋂ i = 1 m E i ) ≥ 1 − m α (8) P(\bigcap_{i=1}^{m}E_i)\ge1-m\alpha\tag8 P(i=1mEi)1mα(8)

( 8 ) (8) (8)就是著名的Bonferroni不等式,据此我们可以得到, m m m个事件,若每个单独发生的概率为 1 − α 1-\alpha 1α,那么它们同时发生的概率不再是 1 − α 1-\alpha 1α,而是大于等于 1 − m α 1-m\alpha 1mα,可能比 1 − α 1-\alpha 1α小的多。

 为了使它们同时发生的概率为 1 − α 1-\alpha 1α,可以将每个事件发生的概率提高到 1 − α m 1-\frac{\alpha}{m} 1mα,即 P ( E i ) = 1 − α m , i = 1 , ⋯   , m P(E_i)=1-\frac{\alpha}{m}, i = 1, \cdots, m P(Ei)=1mα,i=1,,m,此时则有 P ( ⋂ i = 1 m E i ) ≥ 1 − α P(\bigcap_{i=1}^{m}E_i)\ge1-\alpha P(i=1mEi)1α。按照这个思想,我们可以得到 ( 7 ) (7) (7)的变型为 [ ( y ˉ i ⋅ − y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 m ) , ( y ˉ i ⋅ + y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 m ) ] (9) [(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m})]\tag9 [(yˉiyˉi)σ^ni1+nj1 tna(12mα),(yˉi+yˉi)σ^ni1+nj1 tna(12mα)](9)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值