方差分析——联立区间估计

本文介绍了方差分析的基本概念及其在判断因子水平间是否存在显著差异上的应用。当方差分析结果拒绝原假设时,需要进一步通过区间估计来判断各水平间的具体关系。文章详细阐述了普通区间估计和变型区间估计的方法,包括构建置信区间和调整置信水平以确保多个比较的联合置信水平。通过对置信区间的分析,可以确定不同水平间是否有显著性差异,以及差异的方向和大小。
摘要由CSDN通过智能技术生成

一、简介

这里简单介绍了方差分析,如果通过方差分析,我们接受了原假设,那么说明因子 A A A a a a个水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa没有显著性差异;如果我们拒绝了原假设,说明因子 A A A a a a个水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa之间有显著差异,也就是说 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa不完全相等,这时我们需要进一步判断水平 μ 1 , ⋯   , μ a \mu_1, \cdots, \mu_a μ1,,μa之间的关系,可以两两进行 t t t检验,也可以用下面的方法。

二、区间估计

2.1 普通区间估计

 根据这里的介绍,我们知道 y ˉ i ⋅ \bar y_{i\cdot} yˉi是总体 N ( μ i , σ 2 ) N(\mu_i, \sigma^2) N(μi,σ2) n i n_i ni个样本的均值,根据正态总体样本均值的性质可知: y ˉ i ⋅ ∼ N ( μ i , σ 2 n i ) , i = 1 , 2 , ⋯   , a (1) \bar y_{i\cdot}\sim N(\mu_i, \frac{\sigma^2}{n_i}), i = 1, 2, \cdots, a\tag1 yˉiN(μi,niσ2),i=1,2,,a(1)
并且 y ˉ i ⋅ \bar y_{i\cdot} yˉi y ˉ j ⋅ ( i ≠ j ) \bar y_{j\cdot}(i \ne j) yˉj(i=j)相互独立,所以有 y ˉ i ⋅ − y ˉ i ⋅ ∼ N ( μ i − μ j , ( 1 n i + 1 n j ) σ 2 ) (2) \bar y_{i\cdot}-\bar y_{i\cdot}\sim N(\mu_i-\mu_j, (\frac{1}{n_i}+\frac{1}{n_j})\sigma^2)\tag2 yˉiyˉiN(μiμj,(ni1+nj1)σ2)(2)
进而有 U = ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ 1 n i + 1 n j ∼ N ( 0 , 1 ) (3) U=\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim N(0, 1)\tag3 U=σni1+nj1 (yˉiyˉi)(μiμj)N(0,1)(3)

σ ^ 2 = S e 2 n − a \hat{\sigma}^2 = \frac{S_e^2}{n-a} σ^2=naSe2,则根据这里的证明,可知 ( n − a ) σ ^ 2 σ 2 = S e 2 σ 2 ∼ χ n − a 2 (4) \frac{(n-a)\hat{\sigma}^2}{\sigma^2}=\frac{S_e^2}{\sigma^2}\sim \chi_{n-a}^2\tag4 σ2(na)σ^2=σ2Se2χna2(4)

结合正态总体的样本均值与样本方差的独立性可知, U U U σ ^ 2 \hat{\sigma}^2 σ^2独立,所以根据 ( 3 ) (3) (3) ( 4 ) (4) (4),可知 ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∼ t n − a (5) \frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}\sim t_{n-a}\tag5 σ^ni1+nj1 (yˉiyˉi)(μiμj)tna(5)

那么对于给定的 α \alpha α,随机事件 ∣ ( y ˉ i ⋅ − y ˉ i ⋅ ) − ( μ i − μ j ) σ ^ 1 n i + 1 n j ∣ ≤ t n − a ( 1 − α 2 ) (6) |\frac{(\bar y_{i\cdot}-\bar y_{i\cdot}) - (\mu_i-\mu_j)}{\hat\sigma \sqrt{\frac{1}{n_i}+\frac{1}{n_j}}}|\le t_{n-a}(1-\frac{\alpha}{2})\tag6 σ^ni1+nj1 (yˉiyˉi)(μiμj)tna(12α)(6)发生的概率为 1 − α 1-\alpha 1α,因此对固定的 i , j , μ i − μ j i, j, \mu_i - \mu_j i,j,μiμj的置信系数 1 − α 1-\alpha 1α的置信区间为 [ ( y ˉ i ⋅ − y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) , ( y ˉ i ⋅ + y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 ) ] (7) [(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2})]\tag7 [(yˉiyˉi)σ^ni1+nj1 tna(12α),(yˉi+yˉi)σ^ni1+nj1 tna(12α)](7)

 如果这个区间包含 0 0 0,则表明我们可以以概率 1 − α 1-\alpha 1α断言 μ i \mu_i μi μ j \mu_j μj没有显著性差异;如果这个区间落在 0 0 0的左边,则表明我们以概率 1 − α 1-\alpha 1α小于 μ i \mu_i μi μ j \mu_j μj;如果这个区间落在 0 0 0的右边,则表明我们以概率 1 − α 1-\alpha 1α大于 μ i \mu_i μi μ j \mu_j μj

2.2 变型区间估计

 对于每一对固定的 i i i j j j,我们用 ( 7 ) (7) (7)构造出置信系数为 1 − α 1-\alpha 1α的置信区间。但对于多个这样的置信区间,它们联合起来的置信系数就不再是 1 − α 1-\alpha 1α,因为下面的Bonferroni不等式
 假设 E i , i = 1 , ⋯   , m E_i, i = 1, \cdots, m Ei,i=1,,m m m m个随机事件, P ( E i ) = 1 − α , i = 1 , ⋯   , m P(E_i)=1-\alpha, i = 1, \cdots, m P(Ei)=1α,i=1,,m,则 P ( ⋂ i = 1 m E i ) = 1 − P ( ⋂ i = 1 m E i ) ‾ = 1 − P ( ⋃ i = 1 m E i ˉ ) ≥ 1 − ∑ i = 1 m P ( E i ˉ ) = 1 − m α P(\bigcap_{i=1}^{m}E_i)=1-P(\overline{\bigcap_{i=1}^mE_i)} = 1-P(\bigcup_{i=1}^m\bar{E_i})\ge1-\sum_{i=1}^mP(\bar{E_i})=1-m\alpha P(i=1mEi)=1P(i=1mEi)=1P(i=1mEiˉ)1i=1mP(Eiˉ)=1mα
P ( ⋂ i = 1 m E i ) ≥ 1 − m α (8) P(\bigcap_{i=1}^{m}E_i)\ge1-m\alpha\tag8 P(i=1mEi)1mα(8)

( 8 ) (8) (8)就是著名的Bonferroni不等式,据此我们可以得到, m m m个事件,若每个单独发生的概率为 1 − α 1-\alpha 1α,那么它们同时发生的概率不再是 1 − α 1-\alpha 1α,而是大于等于 1 − m α 1-m\alpha 1mα,可能比 1 − α 1-\alpha 1α小的多。

 为了使它们同时发生的概率为 1 − α 1-\alpha 1α,可以将每个事件发生的概率提高到 1 − α m 1-\frac{\alpha}{m} 1mα,即 P ( E i ) = 1 − α m , i = 1 , ⋯   , m P(E_i)=1-\frac{\alpha}{m}, i = 1, \cdots, m P(Ei)=1mα,i=1,,m,此时则有 P ( ⋂ i = 1 m E i ) ≥ 1 − α P(\bigcap_{i=1}^{m}E_i)\ge1-\alpha P(i=1mEi)1α。按照这个思想,我们可以得到 ( 7 ) (7) (7)的变型为 [ ( y ˉ i ⋅ − y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 m ) , ( y ˉ i ⋅ + y ˉ i ⋅ ) − σ ^ 1 n i + 1 n j t n − a ( 1 − α 2 m ) ] (9) [(\bar y_{i\cdot}-\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m}), (\bar y_{i\cdot}+\bar y_{i\cdot})-\hat\sigma\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}t_{n-a}(1-\frac{\alpha}{2m})]\tag9 [(yˉiyˉi)σ^ni1+nj1 tna(12mα),(yˉi+yˉi)σ^ni1+nj1 tna(12mα)](9)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值