论文阅读:Adaptive Graph Convolution for Point Cloud analysis

自适应图卷积用于点云分析

论文地址: https://arxiv.org/pdf/2108.08035.
代码地址: https://github.com/hrzhou2/AdaptConv-master.
作者:Zhou Haoran
单位:南京航空航天大学


作为初入图卷积网络的小白,我就根据自己的理解来读这篇文章。

摘要:
问题:从二维网格域推广出来的三维点云的卷积已被广泛研究,但远非完美。标准卷积表征了三维点之间的特征对应难以区分,呈现了特征特征学习差的内在局限性。
贡献:
1、自适应图卷积 Adaptive Graph Convolution,它根据点的动态学习特征为点生成自适应kernel。
2、与使用固定/各向同性kernel相比,AGC 提高了点云卷积的灵活性,有效地、精确地捕获了来自不同语义部分的点之间的不同关系。
3、与流行的注意力机制不同,AGC是适应性卷积,而不是简单地给相邻点分配不同的权值。
4、广泛的定性和定量评估表明,本文的方法在几个benchmark数据集上优于最先进的点云分类和分割方法。

引言:
点云是个3D的数据,比如Li-DAR, RGB-D摄像机。对于3D目标而言,这是一种简化的方式。点云技术的应用也非常广泛。2D的图像就是普通的网格,并且是结构化的数据,而点云是随机离散点。
如果将体素引进来解决点云问题,计算量往往很大,所以3D卷积网络的层数往往不是很深。
而PointNet的提出,使用多层感知机来处理点云问题,是一个开创性的工作。

本文的创新点:
自适应图卷积,将图卷积过程中的权重分配操作交由变量,让模型自己学习一个点相邻关系的权重
网络实现
在实验中,自适应卷积是用两层感知机和残差连接实现的,这样可以学习到重要的几何信息。标准的图卷积层使用的是同输入的f大小的图结构作为自适应卷积核。
图池化
如何逐步减少不重要的点,来构建层次结构中的网络呢,利用最远点采样算法对点云进行次采样,并且设置采样率为4,即四选一。对每个特征图,都进行采样,以简化计算。而在恢复原图的过程中,我们使用插入的方式,将图节点插入到对应原始节点中,然后使用最近邻取值方法逐步恢复图像的节点,从而恢复原图并得到点云的分割结果。
且看 下图:
初看AGC
这篇文章所解决的问题就是权重自适应,而不是简单的通过注意力进行分配,这种分配的缺陷是,所有的权重相加是一个固定的数。
AGC网络
在网络架构呈现在我们眼中时,这个网络层数是相当少的。所以参数量也不大。在后面的结果展示了模型的参数。

AGC实现

实现的过程同传统的注意力差别并不是太大,但在图卷积上实现这种权重分配也确实是一个大的创新点。
而图卷积的池化操作也是本文的一个亮点,毕竟这种采样之前是没有人尝试过的。

数据集:ShapeNetPart
由16881个样例,16种。其中14006个作为训练集,剩下2874个样本作为测试集。
每一个点云包含2-6个部位,而每个部位的点由50种标签组成。实验过程中,抽取2048个点,点的属性包括三维坐标的点法线。
ModelNet40: 12311张CAD models, 9843张训练, 2468张测试。
S3DIS: 3D-RGB, 13种,3栋楼 共计271个房间。

实验结果,看看,然后仔细分析论文中的写作手法:
ModelNet40
飞机上的结果
shapeNet上的结果
从效率和对比结果进行有效性的阐述!!


感谢阅读!
点亮金手指,精彩继续!!!!

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值