从简单泛函到第二类拉格朗日方程

首先膜拜欧拉大神~

还有拉格朗日~

1.泛函作用

泛函的英文名叫functional,“函数的”,实际上是函数的函数的意思。函数本质上是两个数集之间的映射关系,而泛函则表明了一个函数集和一个数集之间的映射关系。

从抽象意义上讲,函数可以表征一种动作action(或者表明一个事件),比如将数集A中的一个元素a投射到数集B中得到了一个元素b,这个过程输入量(动作的对象)是数集A中的元素a,输出量(动作的结果)是数集B中的元素b。而泛函同样表示了一个动作,只不过动作的对象换成了一个函数。

举个网上常见的例子来说,比如我想知道一个小球(只受重力)从一个较高的点到一个较低的点滚动的用时最短的路径是什么?这个问题可以表述为:我想知道一种情况(一个事件action),在不同的路径下(输入量,同样路径可以表述成一个二维的action)使得小球下滚时间(输出量)最短。而第一个action,就是函数的函数,泛函。

 2.最简泛函

 最简泛函的定义如下:

C\left ( f\left ( x \right ) \right )=\int_{a}^{b}L\left ( f\left ( x \right ),\dot{f}\left( x \right ), x \right )dx

其中,f\left ( x \right )是泛函C的输入;\dot{f}\left ( x \right )是函数f\left ( x \right )对其函数自变量x的微分;L\left ( f\left ( x \right ),\dot{f}\left( x \right ), x \right )是泛函C的核函数;为了得到数的输出,需要利用有界定积分将其进行转换,最后泛函C输出的应该是个具体的数。简单泛函只与函数及其自变量以及一阶导数有关。

3.最简泛函的极值

假设泛函C存在极值,那么根据极值定义,需要找到函数f_{0}\left ( x \right )使得泛函

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值