基于改进凸优化算法的多机编队突防航迹规划

本文改进凸优化算法,提出多机编队低空突防航迹规划方法。先进行问题建模,包含航迹、障碍物和任务分配评估模型;提出集群任务分组概念设计预规划航迹;考虑新障碍和组间避障。仿真表明,该方法能合理分配任务,提高求解效率和成功率,避障效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源自:系统工程与电子技术

作者:刘玉杰, 李樾, 韩维, 崔凯凯

“人工智能技术与咨询”  发布

摘要

为更好地发挥多机编队在低空突防作战中的优势, 对已有的凸优化算法进行改进, 提出一种多机编队低空突防航迹规划方法。首先, 根据低空突防任务特点进行问题建模, 包含多机编队航迹规划模型、障碍物模型以及任务分配评估模型。其次, 提出基于匈牙利算法的集群任务分组概念, 设计更符合战场需求和运动学规律的预规划航迹。之后, 考虑新类型的外部障碍物和不同任务小组间的组间避障, 通过对约束进行合理的近似与凸优化, 实现多机安全飞行。最后, 通过对比仿真, 验证所提改进方法的可行性和有效性。结果表明, 改进后的航迹规划算法能实现对低空突防任务的合理分配, 求解效率和成功率均有所提高, 对新加入的障碍有良好的避障效果。

关键词

多机编队 ; 低空突防 ; 任务分配 ; 航迹规划 ; 凸优化 ; 避障

引言

现代化战争正在向全方位、立体化、大纵深的多兵种合成作战方向发展, 防空技术的快速进步使得对空战的要求不断提升[1]。应运而生的低空突防技术是多机编队作战以及网络化作战的重要技术, 有效的突防部署可使多机编队更有效地躲避威胁障碍, 提高任务完成效率, 保证飞行安全[2]。面对复杂多变的低空战场环境, 只依赖人工规划航迹或飞行员实时操纵已无法满足现代战场多变的要求, 需要综合考虑自然环境、电磁防御、炮火防御等多种威胁以及飞机本身的性能指标, 并按照科学有效的航迹规划算法, 规划出合理的飞行轨迹, 从而提高飞机的作战效能[3]。因而, 多机编队低空突防的重要基础是确定航迹规划方法, 规划方法的优劣直接决定了低空突防任务完成的效果[4]。

航迹规划根据建模方式的不同, 通常分成两类, 一类是基于转弯角、航段长度而建立代数运动方程[5], 包括势场法[6-8]、图论法[9-11]、随机树法[12-14]等, 此类建模方式适合大尺度的全局规划问题。另一类则是以过载或加速度等控制量为基础, 建立微分运动方程模型[15], 此类建模方式更贴近工程实际, 与控制理论也更为契合。本文采取后一类方式进行建模, 该类模型的求解方式又可分为直接法和间接法[16]。前者的原理是将最优控制问题转化为有限维参数优化问题, 用非线性规划方法进行求解, 其缺点是求解精度不高; 间接法包括伪谱法[17]、混合整数规划算法[18]以及启发式算法[19]等, 其原理是将航迹规划问题视为最优控制问题进行求解, 存在不易收敛的不足。

当前, 作为直接法的典型代表之一, 凸优化方法已成为求解航迹规划问题的一种高效稳定算法, 这与凸优化理论的迅速发展有密切关系[20]。但是, 凸优化建模方法需要基于线性动力学假设, 并受限于建模对象的不同特点, 因而普适性一般。对此, 序列凸优化方法采取逐次凸化的方式, 将原模型中的非凸问题分解为若干凸优化子问题, 从而达到求解一般非凸约束航迹规划问题的目的, 并已在多机编队避障[21]、卫星自主交会[22]、行星着陆[23]等航迹规划案例中得到校验。特别地, 文献[21]针对异构多机系统中各飞机种类的任务特点, 设计了不同的优化目标函数, 并通过凸优化近似各类约束条件, 为多机编队协同航迹规划问题提供了一种新的求解思路, 特别是证明了凸优化算法在解决高维协同航迹规划问题上比伪谱法等经典算法有更大的优势。

研究发现, 将凸优化算法直接应用到多机编队低空突防航迹规划过程中, 还应对以下几个方面进行改进和完善: ①初始规划航迹的改进。在序列凸优化迭代求解的过程中, 初始解即首次输入的初始航迹采用单纯的初始点、目标点连线方式确定, 这不符合飞行的运动学规律, 虽不影响求解, 但导致迭代收敛缓慢, 同时, 并未结合任务需求进行合理的初始任务分配, “协同作战”概念不足, 含“战”量低[21]。②障碍模型及其近似凸化过程的完善。在已有文献中, 对障碍物过于简化, 忽略了其所代表的实际意义, 仅考虑了所谓的圆形障碍物, 未考虑其他构型的障碍, 更没有讨论其他构型障碍的近似与凸优化过程。③多机执行任务时的飞行安全问题需进一步考虑。由于低空突防的飞机数量更多, 子任务不尽相同, 应考虑建立“任务小组”的概念, 在完成任务分配的基础上, 重点研究航迹规划中不同任务小组之间的避障问题, 以进一步保证多机飞行安全。

基于上述分析, 本文以固定翼飞机多机编队为研究对象, 以低空突防为任务输入, 对已有的凸优化算法进行改进, 提出一种基于改进凸优化算法的多机编队低空突防航迹规划方法。本文的创新点包括以下3点: 首先, 提出了基于匈牙利算法的集群任务分组概念, 设计了更符合运动学规律、更贴近战场实际需求的预规划航迹; 其次, 在凸优化过程中加入了更贴合战场环境的多边形障碍, 用以模拟禁飞区, 并解决了航迹规划离散点之间可能与多边形障碍发生碰撞的问题; 最后, 针对不同任务小组之间可能发生的碰撞问题, 引入“虚拟多边形”的概念以进行凸优化处理, 以进一步确保各任务小组中飞机的飞行安全。

1 问题建模

1.1  多机编队航迹规划模型的建立

多机编队航迹规划模型是基于飞行器运动模型建立的, 设定多机编队在执行任务过程中无侧滑飞行, 且发动机推力与飞行速度方向一致, 从而可建立单机三维空间点质量运动模型, 如下所示:

图片

(1)

式中: (xi, yi, hi)表示飞机i在地面坐标系下的三维坐标; (γi, χi)表示飞机i的航迹倾角和航向角; Vi表示飞机i的地速; (nx, i, ny, i, nz, i)分别表示飞机i的水平轴向过载、法向过载的水平分量和法向过载的垂直分量; si和ui分别表示飞机i的状态量及控制量, 其中, si=(xi, yi, hi, Vi, χi, γi)T, ui=(nx, i, ny, i, nz, i)T。由于本文所研究的多机为同一型号, 因而编队中各机的运动模型一致, 用下标i进行区分。

在完成运动模型建立的基础上, 多机航迹规划问题还需要考虑若干约束条件, 具体包含飞机初/末状态量约束、状态/控制量的幅值约束、控制量的变化率约束、机间防碰撞约束和与外部障碍物防碰撞约束等, 上述约束的数学表达式分别如下所示:

图片

(2)

图片

(3)

图片

(4)

图片

(5)

图片

(6)

式中: t0和tf分别表示航迹规划的初始时刻和终端时刻; 矩阵F =[I3×3, 03×3], Rt是机间安全距离; E =[I2×2, 04×4], pobs, m和rm分别是外部障碍的中心坐标和对应的安全距离; M0为静态威胁个数。

约束条件确定后, 需设定航迹规划模的目标函数, 结合低空突防任务快速、精确打击的特点要求, 设定以最短时间到达目标点为目标函数, 具体如下所示:

图片

(7)

1.2    障碍物模型的建立

低空突防过程中,

1 2/3维图像分割工具箱 2 PSORT粒子群优化工具箱 3 matlab计量工具箱Lesage 4 MatCont7p1 5 matlab模糊逻辑工具箱函数 6 医学图像处理工具箱 7 人工蜂群工具箱 8 MPT3安装包 9 drEEM toolbox 10 DOMFluor Toolbox v1.7 11 Matlab数学建模工具箱 12 马尔可夫决策过程(MDP)工具箱MDPtoolbox 13 国立SVM工具箱 14 模式识别与器学习工具箱 15 ttsbox1.1语音合成工具箱 16 分数阶傅里叶变换的程序FRFT 17 魔方模拟器与规划求解 18 隐马尔可夫模型工具箱 HMM 19 图理论工具箱GrTheory 20 自由曲线拟合工具箱ezyfit 21 分形维数计算工具箱FracLab 2.2 22 For-Each 23 PlotPub 24 Sheffield大学最新遗传算法工具箱 25 Camera Calibration 像标定工具箱 26 Qhull(二维三维三角分解、泰森图)凸包工具箱 2019版 27 jplv7 28 MatlabFns 29 张量工具箱Tensor Toolbox 30 海洋要素计算工具箱seawater 31 地图工具箱m_map 32 othercolor配色工具包 33 Matlab数学建模工具箱 34 元胞自动 35 量子波函数演示工具箱 36 图像局域特征匹配工具箱 37 图像分割graphcut工具箱 38 NSGA-II工具箱 39 chinamap中国地图数据工具箱(大陆地区) 40 2D GaussFit高斯拟合工具箱 41 dijkstra最小成本路径算法 42 维数据快速矩阵乘法 43 约束粒子群优化算法 44 脑MRI肿瘤的检测与分类 45 Matlab数值分析算法程序 46 matlab车牌识别完整程序 47 器人工具箱robot-10.3.1 48 cvx凸优化处理工具箱 49 hctsa时间序列分析工具箱 50 神经科学工具箱Psychtoolbox-3-PTB 51 地震数据处理工具CREWES1990版 52 经济最优化工具箱CompEcon 53 基于约束的重构分析工具箱Cobratoolbox 54 Schwarz-Christoffel Toolbox 55 Gibbs-SeaWater (GSW)海洋学工具箱 56 光声仿真工具箱K-Wave-toolbox-1.2.1 57 语音处理工具箱Sap-Voicebox 58 贝叶斯网工具箱Bayes Net Toolbox(BNT) 59 计算视觉工具箱VFfeat-0.9.21 60 全向相校准工具箱OCamCalib_v3.0 61 心理物理学数据分析工具箱Palamedes1_10_3 62 生理学研究工具箱EEGLAB 63 磁共振成像处理工具箱CONN 18b 64 matlab 复杂网络工具箱 65 聚类分析工具箱FuzzyClusteringToolbox 66 遗传规划matlab工具箱 67 粒子群优化工具箱 68 数字图像处理工具箱DIPUM Toolbax V1.1.3 69 遗传算法工具箱 70 鱼群算法工具箱OptimizedAFSAr 71 蚁群算法工具箱 72 matlab优化工具箱 73 数据包络分析工具箱 74 图像分割质量评估工具包 75 相关向量工具箱 76 音频处理工具箱 77 nurbs工具箱 78 Nurbs-surface工具箱 79 grabit数据提取工具箱 80 量子信息工具箱QLib 81 DYNAMO工具箱 82 NEDC循环的整车油耗量 83 PlotHub工具箱 84 MvCAT_Ver02.01 85 Regularization Tools Version 4.1 86 MatrixVB 4.5(含注册) 87 空间几何工具箱 matGeom-1.2.2 88 大数计算工具箱 VariablePrecisionIntegers 89 晶体织构分析工具包 mtex-5.7.0 90 Minimal Paths 2工具箱 91 Matlab数学建模工具箱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值