pytorch学习笔记(六)--典型函数(普通函数、激活函数、损失函数)梯度

分类

主要有导数(标量)、偏微分(特殊的导数,标量)、梯度(由偏微分组成的向量)三类

极小值求解

在这里插入图片描述
影响因素:

  • 初始状态

  • 学习率,影响收敛速度和精度

  • 动量,逃离局部最小值

常见函数的梯度

在这里插入图片描述

若f(x)=g(x)/h(x)
则f'(x)=[g'(x)h(x)-h'(x)g(x)]/[h(x)]^2

激活函数及其梯度

** sigmoid/logistic**
在这里插入图片描述
Sigmoid函数的梯度求解
在这里插入图片描述
单层感知器损失函数的梯度
在这里插入图片描述
对应的梯度求解步骤如下:
在这里插入图片描述
在这里插入图片描述
Tanh函数
在这里插入图片描述
Tanh函数的梯度推导
在这里插入图片描述
多层感知器的损失函数梯度求解
在这里插入图片描述
多层感知器的损失函数求解步骤:
在这里插入图片描述

在这里插入图片描述

ReLU函数
在这里插入图片描述

损失函数的梯度

MSE均方损失函数
在这里插入图片描述
MSE是L2范数的平方
mse = torch.norm(y - pred, 2).pow(2)
梯度求解
在这里插入图片描述
SoftMax函数
在这里插入图片描述
梯度求解
当 i = j时:
在这里插入图片描述
当 i ≠ j 时
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ThetaQing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值