Adaptive Filter Learning Notes 自适应滤波学习笔记01 随机过程

这是一个学习笔记系列。为督促自己看书,尽量更新。但同时也在学其他东西,也不知道能不能实现。少玩耍,多读书。

应该会慢慢改进,会慢慢补充每一个部分的笔记。

Stochastic Progress and Models

一些定义

*本节出现的概念:随机过程(stochastic progress),强平稳过程(strictly stationary progress),均值函数(mean-value function),自相关函数(autocorrelation funtion),自协方差函数(autocovariance function),均方值(mean-square value),方差(covariance),广义平稳(wide-sense stationary)或 弱平稳(weakly stationary),均值遍历性(mean ergodic),相关矩阵(correlation matrix)

随机过程(stochastic progress) 是一个与时间有关的函数。这个系列里面关注的随机过程是关于时间离散的,且为等时距观测的过程。随机过程还是一个比较抽象和虚无缥缈的东西。我感觉和随机以及概率牵扯上的都天生有种朦胧感。如果一个离散时间随机过程在现实中实现,就看作是一个时间序列。为了表示的方便我们可以吧时距固定为1,设 u ( n ) u(n) u(n)当前(present) 的观测。

强平稳过程(strictly stationary progress) 是指其统计特性不随时间变化的过程。对于我们这里的考虑的随机过程来看就是指, u ( n ) , u ( n − 1 ) , … , u ( n − M ) u(n),u(n-1),\dots,u(n-M) u(n),u(n1),,u(nM)的联合概率密度函数是不随时间变化的。在实际情况中,随机过程的联合概率密度是很难测量到的,所以我们考虑随机过程的部分性质,即一阶矩和二阶矩。
为简化符号, u ( n ) u(n) u(n)也可用来代指整个随机过程。随机过程 u ( n ) u(n) u(n)均值函数(mean-value function) μ ( n ) = E [ u ( n ) ] , \mu(n) = \mathbb{E}[u(n)], μ(n)=E[u(n)],其中 E \mathbb{E} E表示求期望。自相关函数(autocorrelation function) r ( n , n − k ) = E [ u ( n ) u ∗ ( n − k ) ] , k = 0 , ± 1 , ± 2 , … r(n,n-k)=\mathbb{E}[u(n)u^*(n-k)],k=0,\pm1,\pm2,\dots r(n,nk)=E[u(n)u(nk)],k=0,±1,±2,其中 ∗ ^{*} 表示共轭。自协方差函数(autocovariance function) c ( n , n − k ) = E [ ( u ( n ) − μ ( n ) ) ( u ( n − k ) − μ ( n − k ) ) ∗ ] = r ( n , n − k ) − μ ( n ) μ ( n − k ) . c(n,n-k)=\mathbb{E}[(u(n)-\mu(n))(u(n-k)-\mu(n-k))^{*}]=r(n,n-k)-\mu(n)\mu(n-k). c(n,nk)=E[(u(n)μ(n))(u(nk)μ(nk))]=r(n,nk)μ(n)μ(nk).对于强平稳过程来说前面这三个函数应该都是和时间没有关系的,也就是与 n n n无关, μ ( n ) = μ , r ( n , k ) = r ( k ) , c ( n , k ) = c ( k ) \mu(n)=\mu, r(n,k)=r(k), c(n,k)=c(k) μ(n)=μ,r(n,k)=r(k),c(n,k)=c(k)。特别地,当 k = 0 k=0 k=0时, r ( 0 ) = E [ ∣ u ( n ) ∣ 2 ] r(0)=\mathbb{E}[|u(n)|^2] r(0)=E[u(n)2],即均方值(mean-square value) c ( 0 ) = σ u 2 c(0)=\sigma_{u}^2 c(0)=σu2,即方差(covariance)。当 μ = 0 \mu=0 μ=0时, r ( k ) = c ( k ) r(k)=c(k) r(k)=c(k),在后面的众多滤波的分析中都是假设 μ = 0 \mu=0 μ=0的,故就都用的 r ( k ) r(k) r(k)

注: μ ( n ) = μ , r ( n , k ) = r ( k ) , c ( n , k ) = c ( k ) \mu(n)=\mu,r(n,k)=r(k),c(n,k)=c(k) μ(n)=μ,r(n,k)=r(k),c(n,k)=c(k)并不能保证随机过程是强平稳的,毕竟只是统计特性中的部分性质,但可以称这种随机过程是广义平稳(wide-sense stationary)弱平稳(weakly stationary)。Doob 在1953年证明了 u ( n ) u(n) u(n)是广义平稳的 ⇔ \Leftrightarrow 对于任意的 n n n E [ ∣ u ( n ) ∣ 2 ] < 0 \mathbb{E}[|u(n)|^2]<0 E[u(n)2]<0【这个我没有搞太清楚也还没查证,先暂时放在这里,一般的物理或者工程上的随机过程都是能满足这个条件的】。

对于一个广义平稳过程来说,关于时间求平均到底是不是这个随机过程的均值?这里有一个相关的定理。设 μ ^ ( N ) = 1 N ∑ n = 0 N − 1 u ( n ) . \hat{\mu}(N)=\frac{1}{N}\sum_{n=0}^{N-1}u(n). μ^(N)=N1<

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值