基于轻量级yolov5s开发构建车道线实例分割检测识别系统

文章介绍了车道线实例分割检测的重要性,特别是对于自动驾驶和交通监控系统的应用。通过使用深度学习模型如YOLOv5s进行优化,以实现更轻量级的解决方案。文章展示了数据集、标注信息以及训练后的性能指标,包括F1值、精确率、召回率等,并讨论了未来技术发展的方向,如精度提升、实时性优化和多模态数据融合等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

车道线实例分割检测是指利用计算机视觉技术对图像或视频中的车道线进行精确的识别和定位任务。该任务旨在区分和标记出每条独立的车道线,并提供它们的准确位置和形状信息。

实例分割是目标检测和语义分割的结合,不仅要找到目标的边界框,还需对目标的每个像素进行分类,达到像素级别的精细分割。相比于传统的车道线检测方法,实例分割可以提供更准确、更细致的结果。

车道线实例分割检测通常采用深度学习模型,如Mask R-CNN、DeepLab等。这些模型基于卷积神经网络架构,通过训练大量标注好的车道线样本来学习车道线的特征和上下文信息。在测试阶段,模型能够对新图像或视频进行预测,并输出每条车道线的边界框或像素级别的掩码。

车道线实例分割检测的应用广泛,包括自动驾驶系统中的环境感知与路径规划、交通监控系统中的违规检测与交通流量分析,以及智能驾驶辅助系统中的车道保持与驾驶员警示等。这项技术有助于提高行驶安全性、降低驾驶压力,并促进智能交通系统的发展。

在前面的一些项目开发实践中,我们已经基于传统的 MaskRCNN模型和DeepLabv3模型开发构建了道理场景下车道线实例分割系统了,这里本文的核心目的就是为了基于更加轻量级的yolov5s-v7.0版本来开发构建道路场景下的车道线实例分割检测识别系统,首先来看下效果图,如下所示:

 接下来看下我们准备的数据集,如下所示:

 实例数据标注如下:

0 0.051770833333333335 0.3221296296296296 0.058333333333333334 0.314537037037037 0.06484375 0.30694444444444446 0.07140624999999999 0.29935185185185187 0.07796874999999999 0.2917592592592593 0.08447916666666666 0.2840740740740741 0.09104166666666667 0.2764814814814815 0.09755208333333334 0.26888888888888884 0.10411458333333333 0.2612962962962963 0.110625 0.2537037037037037 0.1171875 0.2461111111111111 0.12369791666666667 0.23851851851851855 0.13026041666666666 0.23092592592592592 0.13677083333333334 0.22324074074074074 0.14333333333333334 0.21564814814814814 0.14984375 0.20805555555555555 0.15640625 0.20046296296296295
2 0.0 0.2588888888888889 0.007604166666666666 0.2556481481481482 0.015156250000000001 0.2523148148148148 0.02276041666666667 0.2490740740740741 0.03036458333333333 0.24574074074074073 0.03796875 0.2424074074074074 0.04552083333333334 0.23916666666666667 0.053125 0.2358333333333333 0.06072916666666666 0.23259259259259257 0.06828125 0.22925925925925925 0.07588541666666666 0.22592592592592592 0.08348958333333334 0.22268518518518518 0.09109375 0.21935185185185185 0.09864583333333334 0.21611111111111111 0.10625 0.2127777777777778 0.11385416666666666 0.20944444444444443 0.12140625 0.2062037037037037 0.12901041666666666 0.20287037037037037 0.13661458333333334 0.19962962962962963
3 0.3333333333333333 0.2873148148148148 0.3259375 0.28277777777777774 0.31854166666666667 0.27824074074074073 0.31114583333333334 0.27379629629629626 0.3038020833333333 0.26925925925925925 0.29640625000000004 0.2647222222222222 0.28901041666666666 0.2601851851851852 0.28161458333333333 0.2556481481481482 0.27421875 0.2512037037037037 0.26682291666666663 0.24666666666666665 0.25942708333333336 0.24212962962962964 0.2520833333333333 0.2375925925925926 0.2446875 0.23314814814814816 0.23729166666666668 0.22861111111111113 0.22989583333333333 0.22407407407407406 0.2225 0.21953703703703703 0.21510416666666668 0.2150925925925926 0.20776041666666664 0.21055555555555555 0.20036458333333332 0.20601851851851852 0.19296875 0.20148148148148148 0.18557291666666667 0.19694444444444442
1 0.24968749999999998 0.32175925925925924 0.24390625000000002 0.3125 0.238125 0.3031481481481481 0.23234375000000002 0.29379629629629633 0.22651041666666666 0.28453703703703703 0.22072916666666667 0.2751851851851852 0.21494791666666666 0.2659259259259259 0.20911458333333333 0.2565740740740741 0.2033333333333333 0.24722222222222223 0.19755208333333335 0.23796296296296296 0.19177083333333333 0.22861111111111113 0.1859375 0.21935185185185185 0.18015625 0.21000000000000002 0.174375 0.20074074074074075

文本使用到的s系列模型文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 8  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# Backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# Head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

训练数据配置文件如下所示:

#Dataset
path: ./datasets/dataset-segment  
train: images/train 
val: images/train  
test:  images/train 



# Classes
names:
  0: 0
  1: 1
  2: 2
  3: 3
  4: 4
  5: 5
  6: 6
  7: 7

这里默认设定的是100次epoch迭代计算,接下来看下结果详情数据,如下所示:

【F1值曲线】

 【精确率曲线】

 【召回率曲线】

 【PR曲线】

 【混淆矩阵】

 数据类别标签可视化如下所示:

 训练过程可视化如下所示:

 【batch计算实例】如下所示:

 模型参数结构图如下所示:

 到这里本文的主要实践工作就结束了,对于未来车道线分割技术在未来有以下几个展望:

  1. 更高的精度和稳定性:随着深度学习算法的不断发展和改进,车道线分割技术将更加准确和可靠。模型会更好地理解图像中复杂的背景、光照变化以及各种天气条件对车道线的影响,从而提供更精准的分割结果。

  2. 实时性能的提升:实时性是车道线分割技术在自动驾驶和驾驶辅助系统中的关键要求。未来的算法和硬件设备将更注重优化运算速度,以实现更快的车道线检测和分割,使其能够在实时场景下实际应用。

  3. 车道线类型的拓展:目前车道线分割主要针对标准的直线、虚线和实线等常见车道线类型。未来的技术可能将扩展到更复杂的车道线情况,如交叉口、环岛、斑马线等特殊标记,以满足不同交通场景下的需求。

  4. 多模态数据融合:除了单纯的图像信息,未来的车道线分割技术可能会融合其他传感器数据,如激光雷达、高精度地图等,以提供更全面且一致的车道线分割结果。多模态数据融合可以增强算法在各种环境条件下的稳定性和可靠性。

  5. 自适应与自主学习能力:未来的车道线分割技术可能具备自适应能力,能够根据交通标准和实际驾驶场景进行动态调整并学习新的车道线模式。通过自主学习,算法可以不断优化自身,并适应不断变化的道路标记和驾驶环境。

综上所述,未来车道线分割技术将在精度、实时性、适应性和数据融合等方面不断取得进步,为自动驾驶和驾驶辅助系统提供更可靠和高效的支持。

希望早日可以看到技术带给生活的遍历!

### 实现YOLOv5中的车道线检测 #### 数据准备 为了使YOLOv5能够执行车道线检测,首先需要收集并标注适合的数据集。数据集中应包含不同光照条件、天气状况以及复杂交通场景下的图像。每幅图像是关于车道线的位置进行精确标注[^1]。 #### 模型调整 YOLOv5本身是一个通用的目标检测框架,在此基础上增加特定于车道线的任务可以通过修改网络结构来完成。一种常见的方式是在原有基础上加入额外的分支用于回归车道线位置参数或直接输出分割掩码表示车道区域[^3]。 #### 训练过程 当准备好定制化的数据之后就可以开始训练模型了。这通常涉及到设置合适的超参数比如学习率、批次大小等,并且可能还需要对损失函数做一些微调以便更好地适应新的任务需求。此外,考虑到实际应用环境的变化多端,建议采用迁移学习策略——即先在一个大规模预训练权重上初始化再针对自己的小规模专有数据继续优化[^2]。 #### 后处理逻辑 即使有了很好的预测结果,后处理也是必不可少的一环。对于得到的边界框或者其他形式的结果可以利用诸如霍夫变换(Hough Transform)这样的经典计算机视觉算法进一步精炼最终输出更加平滑连续的线条形状。 ```python import torch from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression, scale_coords from yolov5.utils.torch_utils import select_device from yolov5.utils.datasets import letterbox import cv2 import numpy as np def detect_lanes(image_path): device = select_device('') # Load model weights = 'path_to_your_weights' model = attempt_load(weights, map_location=device) img_size = 640 conf_thres = 0.25 iou_thres = 0.45 image = cv2.imread(image_path) original_shape = image.shape[:2] # Preprocess the input image processed_image = letterbox(image, new_shape=img_size)[0] processed_image = processed_image[:, :, ::-1].transpose(2, 0, 1).copy() processed_image = torch.from_numpy(processed_image).to(device) processed_image = processed_image.float() / 255.0 if processed_image.ndimension() == 3: processed_image = processed_image.unsqueeze(0) with torch.no_grad(): pred = model(processed_image)[0] detections = non_max_suppression(pred, conf_thres, iou_thres) lane_lines = [] for det in detections[0]: xyxy = scale_coords(processed_image.shape[2:], det[:4], original_shape).round().cpu().numpy() # Assuming class index of lanes is known and fixed. if int(det[-1]) == LANE_CLASS_INDEX: lane_lines.append(xyxy.tolist()) return lane_lines ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值