ChatGPT狂飙160天,世界已经不是之前的样子。
更多资源欢迎关注
随着人工智能(AI)的浪潮袭来,GPT(生成式预训练转换器)及其他通用大模型已经风靡全球。它们以惊人的速度和能力,改变了我们与机器交互的方式,从语言翻译到内容创作,这些模型正在塑造着一个全新的信息时代。
然而,尽管这些技术在公众视野中无处不在,但是在垂直细分领域,AI技术的发展又带来了怎样改变,它们的影响和潜力尚未被广泛理解。
本文以“四大顶级医学期刊”之一的《柳叶刀》上今年以来的发布的AI相关技术文章为视角,带大家一探AI在医学领域的应用和突破。
一、疾病预测
1. CaRi-Heart AI技术:提前10年预测致命心脏疾病
英国CaristoDiagnostics公司在《柳叶刀》上发表了《无阻塞性冠状动脉疾病患者的炎症风险和心血管事件:ORFAN多中心纵向队列研究(TheLancet·PublishedOnline)》,揭示一项具有里程碑意义的临床研究结果。
冠状动脉计算机断层血管造影(CCTA)是胸痛的一线检查,用于指导血运重建。然而,CCTA同样也会发现大量没有阻塞性冠状动脉疾病(CAD)的患者,这些患者预后和治疗管理并不明确。
由于动脉中分泌的炎症信号可以驱动血管周围脂肪组织的变化,因此可以反过来,用标准化的脂肪衰减指数(FAI)量化估计冠状动脉炎症的情况。
Cartiso公司开发的CaRi-HeartAI技术可以为患者每条冠状动脉生成FAI评分,并运行AI-Risk算法计算得出患者未来8年发生致命心脏时间的风险。
本研究数据包括英国八家医院的40,091名连续患者,这些患者接受了临床指征的CCTA检查,随访时间中位数为2.7年,随访期间未出现MACE(即心肌梗死、新发心力衰竭或心源性死亡)。并在两家医院随访时间最长(中位数7.7年)的3,393名连续患者中评估了FAI评分在存在和不存在阻塞性CAD时的预后价值。
AI-Risk算法结合了FAI评分、冠状动脉粥样硬化的程度(如果有)以及患者的传统风险因素,能够有力地预测10年内的心脏死亡率和MACE,无论是否存在冠状动脉粥样硬化。
在对744名参与者进行的前瞻性真实世界评估调查中,临床护理团队使用AI-Risk分类后,调整了45%的患者的管理建议,CaRi-HeartAI技术的使用让医生发现传统指标不能发现的风险。
CaRi-HeartAI技术发现了超出当前临床风险分层和CCTA解释的炎症风险,特别是在没有阻塞性CAD的患者中。CaRi-Heart将这些信息整合到预测算法中,实现作为传统风险因素(常规临床CCTA解释、钙化评分和斑块量化)之外的补充。
2. 急性白血病AI预测:预测准确率达99.7%
Vincent Alcazer团队基于来自六所独立法国大学医院被诊断患有AML、APL或 ALL的1410名18岁或以上的患者。
在初步疾病评估时收集了 22 个常规参数;两个数据集中缺失值超过 25% 的变量未用于AI-PAL模型训练,因此最终纳入了 19 个参数。
急性白血病是一种危及生命的血液系统癌症,其特征是转化的未成熟造血细胞浸润血液和骨髓。
及时准确地诊断三种主要的急性白血病亚型(即急性淋巴细胞白血病[ALL]、急性髓细胞白血病 [AML] 和急性早幼粒细胞白血病 [APL])对于指导初始治疗和预防早期死亡至关重要。
AI-PAL对APL、ALL和AML的自信预测准确率为99.7%,对ALL和AML的总体预测准确率为98.8%,对APL、ALL和AML的总体预测准确率为96.1%,对ALL和AML的总体预测准确率为86.3%。
二、疾病检查
1. 颅内动脉瘤AI检测:98.8%的真正阳性动脉瘤病例可以通过AI模型检测到
南京大学医学院附属金陵医院(东部战区总医院)张龙江教授团队联合徐州医科大学胡春峰教授团队、香港大学俞益洲教授团队和北京深睿人工智能实验室等多家单位合作开展的用于中国CT血管成像颅内动脉瘤检测的深度学习模型研究。
他们也于《TheLancet·DigitalHealth》发表了《中国CT血管造影图像颅内动脉瘤检测的深度学习模型:一项分步、多中心、早期临床验证研究》。
颅内动脉瘤是一种常见的脑血管病,全球人口发病率为3.2%,我国发病率为7.0%。
动脉瘤破裂是蛛网膜下腔出血的主要原因,动脉瘤性蛛网膜下腔出血的病死率高达50%。由于颅内动脉瘤体积相对较小且颅内血管复杂,在常规临床实践中经常被忽视或误诊。
在一项CTA研究中,小动脉瘤(<5毫米)的漏诊率高达40%。鉴于潜在动脉瘤性蛛网膜下腔出血的致命风险,有必要采取其他方法来降低CTA的诊断变异性。
团队采用来自中国八家医院的14,517名患者的16,546张头颈部CTA检查图像开发了一个深度学习模型,使用900例经数字减影血管造影验证的CTA病例(检查)图像对AI模型进行外部验证,并与24名临床医生的表现进行比较。
AI模型的患者级敏感度(0.943)高于临床医生(0.658)。AI模型的特异性(0.852)与临床医生的特异性(0.852)没有差异。三家参与医院也显示出了类似的结果。
接下来,作为进一步的外部验证,一项多读者多案例研究招募了48名临床医生,以单独审查298例经数字减影血管造影验证的CTA病例。
在多读者多案例研究中,借助AI模型的临床医生的AUC(0.878vs0.795)和加权替代自由反应ROC下面积(0.865vs0.765)均高于临床医生的独立诊断。在所有四个临床医生亚组中都观察到了相似的结果。
然后,一项随机开放标签对照研究招募了48名临床医生,以评估该AI模型的接受度和性能。AI辅助组的临床医生获得的AUC(0.858)明显高于对照组的临床医生(0.789)。AI辅助组的患者级敏感度高于对照组(0.801vs0.660)。
最后,该模型在1562个真实临床CTA病例中进行了前瞻性部署和验证。