论文阅读:From Understanding to Utilization: A Survey on Explainability for Large Language Models

From Understanding to Utilization: A Survey on Explainability for Large Language Models

这篇论文是由Haoyan Luo和Lucia Specia撰写的关于大型语言模型(LLMs)可解释性的研究综述,题为《From Understanding to Utilization: A Survey on Explainability for Large Language Models》。

摘要

  • 大型语言模型(LLMs)在自然语言处理(NLP)中扮演着越来越重要的角色,但它们的“黑箱”特性引发了对透明度和道德使用的担忧。
  • 本综述强调了提高LLMs可解释性的必要性,深入探讨了可解释性研究、各种方法论以及利用对这些模型理解的任务。
  • 论文主要关注基于Transformer的预训练LLMs,如LLaMA,这些模型因其规模和复杂性提出了独特的可解释性挑战。

1. 引言

  • LLMs在多种任务中表现出色,但它们的不透明性可能导致意外后果,如生成有害或误导性内容,以及模型幻觉。
  • 可解释性在LLMs中扮演着两个关键角色:对最终用户来说,它通过非技术性方式阐明模型的推理,增强了对模型能力和潜在缺陷的理解;对开发者和研究者来说,它提供了对无意偏差和改进领域的洞察,是改进模型下游任务性能的工具。

2. 概述

  • 本节对当前可解释性方法进行了分类,强调了在道德和可控生成方面的挑战,并提出了未来探索的研究问题。

3. 大型语言模型的可解释性

3.1 局部分析
  • 局部解释旨在阐明模型如何为给定输入生成特定预测,如情感分类或标记预测。
  • 论文将局部解释方法分为两类:特征归因分析和Transformer组件分析。
3.2 全局分析
  • 与关注单个模型预测的局部分析不同,全局分析旨在理解和解释模型隐藏状态激活中编码的知识或语言属性。
  • 论文探讨了两种主要的全局分析方法:基于探针的方法和机械可解释性。

4. 利用可解释性

  • 本节讨论了如何将可解释性作为调试和改进模型的工具。
  • 论文聚焦于基于模型可解释性设计的方法,特别关注模型编辑、性能提升和可控生成。
4.1 模型编辑
  • 近年来,出现了大量用于编辑LLMs的技术,目标是在不影响其他输入的性能的情况下,高效地修改特定领域内的知识或行为。
4.2 增强模型能力
  • 可解释性洞察显著增强了LLMs在各种NLP任务中的能力,尤其是在利用长文本和增强上下文学习(ICL)性能方面。
4.3 可控生成
  • 利用可解释性为构建推理时和快速技术提供了机会,以提高生成模型的事实性、校准性和可控性,并使其更符合人类偏好。

5. 评估

  • 论文讨论了评估可解释性方法性能的方法,如评估归因的合理性和模型输出的真实性。

6. 结论

  • 本综述提供了LLMs可解释性的全面概述,总结了基于解释目标的局部和全局分析方法,并讨论了如何利用解释来增强模型和评估这些方法。
  • 论文指出,随着LLMs的不断发展,可解释性将成为确保这些模型透明、公平和有益的关键。

参考文献

  • 论文列出了一系列相关研究的引用,涵盖了可解释性、机器学习算法、自然语言处理等领域。

整体而言,这篇论文为理解和利用大型语言模型提供了一个全面的框架,并强调了在开发和部署这些强大工具时考虑可解释性的重要性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值