论文阅读:2025 arxiv Representation Engineering: A Top-Down Approach to AI Transparency

Representation Engineering: A Top-Down Approach to AI Transparency

总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

https://arxiv.org/pdf/2310.01405

https://www.doubao.com/chat/2882689467930882

速览

这篇论文主要探讨了表征工程(RepE),这是一种提高AI系统透明度的新方法,它借鉴了认知神经科学的观点,把神经网络中的 “表征” 作为分析核心,而不是神经元或电路,以此来更好地理解和控制神经网络的内部机制。

  1. 研究背景:深度神经网络在很多领域都取得了成功,但人们对其内部工作原理了解很少,将其当作黑箱。提高AI系统的透明度很重要,能帮助理解模型决策、发现潜在风险。目前增加AI系统透明度的努力大多集中在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值