线性映射

Linear Maps

本章是整本书内容最多的章节。很多基本概念都在这里详细论述

3.A The Vector Space of Linear Maps

  1. V V V W W W 的所有映射定义为 L ( V , W ) L(V,W) L(V,W)

  2. 当满足以下条件时
    d i m ( V ) ≡ d i m ( W ) , T v j = w j j ∈ 1 , 2 , ⋯   , n dim(V)\equiv dim(W),Tv_j=w_j\quad j\in {1,2,\cdots, n} dim(V)dim(W),Tvj=wjj1,2,,n ,
    只有一个 T : V → W T:V\rightarrow W T:VW,使 V → W V\rightarrow W VW 满足以上条件.

    • 加入有连个 T , H T,H T,H 可以满足条件 T v j = w j , H v j = w j Tv_j=w_j,Hv_j=w_j Tvj=wj,Hvj=wj
      T ( c 1 v 1 + c 2 v 2 + ⋯ + c n v n ) = c 1 w 1 + c 2 w 2 + ⋯ + c n w n T(c_1v_1+c_2v_2+\cdots+c_nv_n)=c_1w_1+c_2w_2+\cdots+c_nw_n T(c1v1+c2v2++cnvn)=c1w1+c2w2++cnwn
      H ( c 1 v 1 + c 2 v 2 + ⋯ + c n v n ) = c 1 w 1 + c 2 w 2 + ⋯ + c n w n H(c_1v_1+c_2v_2+\cdots+c_nv_n)=c_1w_1+c_2w_2+\cdots+c_nw_n H(c1v1+c2v2++cnvn)=c1w1+c2w2++cnwn

    • 由于 v 1 , v 2 , ⋯   , v n v_1,v_2,\cdots,v_n v1,v2,,vn 是非线性相关的所以 T , H T,H T,H
      实际上是同一个映射

  3. L ( V , M ) L(V,M) L(V,M) 本身也是一个向量空间

  4. T ( 0 ) = 0 T(0)=0 T(0)=0

    • T ( 0 ) = T ( 0 + 0 ) = T ( 0 ) + T ( 0 ) ⇒ T ( 0 ) = 0 T(0)=T(0+0)=T(0)+T(0)\Rightarrow T(0)=0 T(0)=T(0+0)=T(0)+T(0)T(0)=0

3.B Null Spaces and Ranges

  1. 定义 null space, n u l l T null\bm{T} nullT
    n u l l T = { v ∈ V : T v = 0 } null\bm{T}=\{v\in \bm{V}:\bm{T}v=0\} nullT={vV:Tv=0} null space ≡ \equiv
    kernel

  2. 如果 T ∈ L ( V , W ) T\in L(V,W) TL(V,W).那么 T T T 单射的充分必要条件为 n u l l T = { 0 } null\bm{T}=\{0\} nullT={0}

    • 如果 T T T
      如果单射那么,因为 T ( 0 ) = 0 T(0)=0 T(0)=0,那么单射只能是 n u l l T = { 0 } null\bm{T}=\{0\} nullT={0}.

    • n u l l T = { 0 } null\bm{T}=\{0\} nullT={0}, 但是如果 v 1 , v 2 ∈ V , v 1 ≠ v 2 v_1,v_2\in V, v_1\neq v_2 v1,v2V,v1̸=v2
      通过 T T T 映射到相同的 w w w。也就是说 T ( v 1 − v 2 ) = 0 T(v_1-v_2)=0 T(v1v2)=0。但是我们得到
      v 1 ≡ v 2 v_1\equiv v_2 v1v2,与假设矛盾。

  3. range的定义 r a n g e T = { T v : v ∈ V } range\bm{T}=\{\bm{Tv}:\bm{v}\in \bm{V}\} rangeT={Tv:vV}

  4. r a n g e T range\bm{T} rangeT W W W 的一个子空间.

  5. d i m ( V ) = d i m ( n u l l T ) + d i m ( r a n g e T ) dim(V)=dim (null\bm{T})+dim (range\bm{T}) dim(V)=dim(nullT)+dim(rangeT), T ∈ L ( V , W ) T\in L(V,W) TL(V,W)

    • u 1 , u 2 , ⋯   , u m u_1,u_2,\cdots,u_m u1,u2,,um n u l l T null\bm{T} nullT的一组基,并且
      u 1 , u 2 , ⋯   , u m , v 1 , v 2 , ⋯   , v n u_1,u_2,\cdots,u_m,v_1,v_2,\cdots,v_n u1,u2,,um,v1,v2,,vn V V V 的一组基

    • 那么 d i m ( V ) = m + n , d i m ( n u l l T ) = m dim(V)=m+n,dim(null\bm{T})=m dim(V)=m+n,dim(nullT)=m.也就是需要证明
      d i m ( r a n g e T ) = n dim(range\bm{T})=n dim(rangeT)=n 也就是说 T v 1 , T v 2 , ⋯   , T v n Tv_1,Tv_2,\cdots,Tv_n Tv1,Tv2,,Tvn
      r a n g e T range\bm{T} rangeT 的一 组基

    • 任意
      w ∈ W ≡ T v = T ( a 1 u 1 + a 2 u 2 + ⋯ + a m u m + b 1 v 1 + b 2 b 2 + ⋯ + b n v n ) w\in W\equiv Tv=T(a_1u_1+a_2u_2+\cdots+a_mu_m+b_1v_1+b_2b_2+\cdots+b_nv_n) wWTv=T(a1u1+a2u2++amum+b1v1+b2b2++bnvn)
      w ≡ T v = T ( b 1 v 1 + b 2 v 2 + ⋯ + b n v n ) = T ( b 1 v 1 ) + T ( b 2 v 2 ) + ⋯ + T ( b n v n ) w\equiv Tv=T(b_1v_1+b_2v_2+\cdots+b_nv_n)=T(b_1v_1)+T(b_2v_2)+\cdots+T(b_nv_n) wTv=T(b1v1+b2v2++bnvn)=T(b1v1)+T(b2v2)++T(bnvn)
      也就是说 T ( b 1 v 1 ) , T ( b 2 v 2 ) , ⋯   , T ( b n v n ) T(b_1v_1),T(b_2v_2),\cdots,T(b_nv_n) T(b1v1),T(b2v2),,T(bnvn) spans W W W,
      因为 u i u_i ui都映射到 0上面去了。

    • c 1 T v 1 + c 2 T v 2 + ⋯ + c n T v n = 0 c_1Tv_1+c_2Tv_2+\cdots+c_nTv_n=0 c1Tv1+c2Tv2++cnTvn=0 也就是说
      c v 1 + c v 2 + ⋯ + c n v n ∈ n u l l T cv_1+cv_2+\cdots+c_nv_n\in null\bm{T} cv1+cv2++cnvnnullT.那么下面的等式成立。
      c 1 v 1 + c 2 v 2 + ⋯ + c n v n = d 1 u 1 + d 2 u 2 + ⋯ + d m u m c_1v_1+c_2v_2+\cdots+c_nv_n=d_1u_1+d_2u_2+\cdots+d_mu_m c1v1+c2v2++cnvn=d1u1+d2u2++dmum all
      但是 c j c_j cj and d j d_j dj 应该都是 0,因为 v j v_j vj u j u_j uj 非线性相关.

    • 最后,我们根据 c 1 T v 1 + c 2 T v 2 + ⋯ + c n T v n = 0 c_1Tv_1+c_2Tv_2+\cdots+c_nTv_n=0 c1Tv1+c2Tv2++cnTvn=0,成立的条件是所有
      c i c_i ci都等于0可得, 我们的假设成立。

  6. 如果 d i m ( V ) > d i m ( W ) dim(V)>dim(W) dim(V)>dim(W) 那么不存在从 V V V W W W 的单射

    • d i m ( n u l l T ) = d i m ( V ) − d i m ( r a n g e T ) ⩾ d i m ( V ) − d i m ( W ) > 0 dim (null\bm{T})=dim(V)-dim (range\bm{T})\geqslant dim(V)-dim(W)>0 dim(nullT)=dim(V)dim(rangeT)dim(V)dim(W)>0

    • 因为必定有两个或者连个以上的向量映射到0向量。

  7. 同理 d i m ( V ) &lt; d i m ( W ) dim(V)&lt;dim(W) dim(V)<dim(W) 那么不存在从 V V V W W W 的满射。

  8. 齐次线性方程组中,如果变量的个数多于方程的个数。则一定有非 零解。

    • 方程组的系数构成一个变换 T T T from F n → F m F^n\rightarrow F^m FnFm, n &gt; m n&gt;m n>m.

    • 也即是说, n u l l T null \bm{T} nullT肯定是不只含有 { 0 } \{0\} {0},所以必然含有非0向量。也就
      是说,方程组有非零解。

  9. 非齐次线性方程组,当变量的个数小于方程组的个数时,再适当的系数情况下是,可以没有解。

    • 不是满射。固然存在某些系数使得方程组没有解。和上一个定理基本一样的原理。

3.C Matrices

  1. T v k = ∑ j = 1 m A j , k w j \bm{Tv}_k=\sum_{j=1}^{m}\bm{A}_{j,k}\bm{w}_j Tvk=j=1mAj,kwj

  2. 假如 S , T ∈ L ( V , W ) S,T\in L(V,W) S,TL(V,W). 那么 M ( S + T ) = M ( S ) + M ( T ) M(S+T)=M(S)+M(T) M(S+T)=M(S)+M(T)

  3. 假如 λ ∈ F \lambda\in \bm{F} λF T ∈ L ( V , W ) T\in L(V,W) TL(V,W). 那么 M ( λ T ) = λ M ( T ) M(\lambda \bm{T})=\lambda M(\bm{T}) M(λT)=λM(T),其中M是一个函数,是一个将映射转化为矩阵的函数

  4. 所有的 m-by-n 矩阵定义为 F m , n \bm{F}^{m,n} Fm,n

  5. d i m F m , n = m n dim \bm{F}^{m,n}=mn dimFm,n=mn

    • The 0 \bm{0} 0 element is [ 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] \left[ \begin{array}{cccc} 0 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; 0 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \vdots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; 0 \end{array} \right] 000000000

    • The basis of F m , n \bm{F}^{m,n} Fm,n is [ 1 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] , [ 0 1 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] , ⋯ &ThinSpace; , [ 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 ] \left[ \begin{array}{cccc} 1 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; 0 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \vdots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; 0 \end{array} \right], \left[ \begin{array}{cccc} 0 &amp; 1 &amp; \cdots &amp; 0 \\ 0 &amp; 0 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \vdots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; 0 \end{array} \right],\cdots, \left[ \begin{array}{cccc} 0 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; 0 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \vdots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; 1 \end{array} \right] 100000000,000100000,,000000001

    • It means that d i m F m , n = m n dim\bm{F}^{m,n}=mn dimFm,n=mn

  6. Matrices Multiplication ( A C ) k = ∑ r = 1 n A j , r C r , k (AC)_k=\sum_{r=1}^{n}A_{j,r}C_{r,k} (AC)k=r=1nAj,rCr,k

  7. If T ∈ L ( U , V ) , S ∈ L ( V , W ) T\in L(U,V),S\in L(V,W) TL(U,V),SL(V,W), then M ( S T ) = M ( S ) M ( T ) M(ST)=M(S)M(T) M(ST)=M(S)M(T)

Invertibility and Isomorphic Vector Spaces

Invertible Linear Maps

  1. 任何一个可逆线性映射的逆只有一个。
    S 1 = S 1 I = S 1 ( T S 2 ) = ( S 1 T ) S 2 = I S 2 = S 2 S_1=S_1I=S_1(TS_2)=(S_1T)S_2=IS_2=S_2 S1=S1I=S1(TS2)=(S1T)S2=IS2=S2

  2. 一个线性映射可逆的充分必要条件是这个线性映射满射和单射。

    • 从一个方向证明,先令 T T T 是一个可逆线性映射.

      • u , v ∈ V u,v\in V u,vV,假设 T u = T v Tu=Tv Tu=Tv then
        u = T − 1 ( T u ) = T − 1 ( T v ) = v u=T^{-1}(Tu)=T^{-1}(Tv)=v u=T1(Tu)=T1(Tv)=v 有此可见, T T T是一个单射

      • 对于任意 w ∈ W w\in W wW. 由 w = T ( T − 1 w ) w=T(T^{-1}w) w=T(T1w), 可得
        r a n g e T = W range\bm{T}=W rangeT=W。可见T是一 个满射

    • 再从另一个方向,先令 T T T 是一个满射和单射.对于任意 w ∈ W w\in W wW,定义
      S w Sw Sw V V V 中唯一使得 T ( S w ) = w T(Sw)=w T(Sw)=w 成立的向量
      T ( ( S ∘ T ) v ) = ( T ∘ S ) ( T v ) = I ( T v ) = T v T((S\circ T)v)=(T\circ S)(Tv)=I(Tv)=Tv T((ST)v)=(TS)(Tv)=I(Tv)=Tv

      由此可见T是一个可逆的线性映射

Isomorphic Vector Spaces

  1. 同构的定义:两个空间 V , W V,W V,W同构,就是说,存在一个可逆矩阵 T T T使得, V → W V\rightarrow W VW

  2. 两个向量空间是同构的,充分必要条件是两个空间的维度相同

    • 从一个方向证明。如果 V , M V,M V,M 同构,而且映射的名字是 T T T

      • 因为同构,单射和满射则 n u l l T = 0 null \bm{T}=0 nullT=0 r a n g e T = W range\bm{T}=W rangeT=W

      • d i m ( V ) = d i m ( n u l l T ) + d i m ( r a n g e T ) ⇒ d i m ( V ) = d i m ( W ) dim(V)=dim(null\bm{T})+dim(range\bm{T})\Rightarrow dim(V)=dim(W) dim(V)=dim(nullT)+dim(rangeT)dim(V)=dim(W)

    • 从另一个方向 d i m ( V ) = d i m ( W ) dim(V)=dim(W) dim(V)=dim(W).

      • v 1 , v 2 , ⋯ &ThinSpace; , v n v_1,v_2,\cdots,v_n v1,v2,,vn V V V 的一组基,令
        w 1 , w 2 , ⋯ &ThinSpace; , w n w_1,w_2,\cdots,w_n w1,w2,,wn W W W 的一组基

      • 定义一个映射
        T ( c 1 v 1 + c 2 v 2 + ⋯ + c n v n ) = c 1 w 1 + c 2 w 2 + ⋯ + c n w n T(c_1v_1+c_2v_2+\cdots+c_nv_n)=c_1w_1+c_2w_2+\cdots+c_nw_n T(c1v1+c2v2++cnvn)=c1w1+c2w2++cnwn

      • 可以很容易的证明上面的映射 T T T是满射和单射。

  3. L ( V , W ) L(V,W) L(V,W) F m , n \bm{F}^{m,n} Fm,n 同构

    • M M M 是一个函数,且 M ( T ) , T ∈ L ( V , W ) M(T),T\in L(V,W) M(T),TL(V,W) F m , n \bm{F}^{m,n} Fm,n
      中的元素.也就是 M ( T ) ∈ F m , n M(T)\in \bm{F}^{m,n} M(T)Fm,n

    • 需要证明 n u l l M = 0 null \bm{M} = 0 nullM=0 也就是只有一个
      T ∈ L ( V , W ) , M ( T ) = 0 , 0 ∈ F m , n T\in L(V,W),M(T)=\bm{0},\bm{0}\in \bm{F}^{m,n} TL(V,W),M(T)=0,0Fm,n

    • T v j = 0 , ∀ j ∈ { 1 , 2 , ⋯ &ThinSpace; , n } Tv_j=0,\forall j\in \{1,2,\cdots,n\} Tvj=0,j{1,2,,n},因为 v 1 , v 2 , ⋯ &ThinSpace; , v n v_1,v_2,\cdots,v_n v1,v2,,vn
      非线性
      相关所以,没有非0的 T T T,可以使所有的 T v j = 0 Tv_j=0 Tvj=0。这就是说, n u l l M = 0 null \bm{M}=0 nullM=0,
      于是M就是单射的。

    • A ∈ F m , n A\in \bm{F}^{m,n} AFm,n, T v k = ∑ j = 1 m A j , k w j Tv_k=\sum_{j=1}^{m}A_{j,k}w_j Tvk=j=1mAj,kwj
      也就是说
      M ( T ) = A ⇒ r a n g e M = F m , n M(T)=A\Rightarrow range\bm{M}=\bm{F}^{m,n} M(T)=ArangeM=Fm,n.这说明 M M M是满射

  4. d i m ( L ( V , W ) ) = d i m ( V ) d i m ( W ) dim(L(V,W))=dim(V)dim(W) dim(L(V,W))=dim(V)dim(W)

    • d i m ( L ( V , W ) ) = d i m F m , n dim(L(V,W))=dim \bm{F}^{m,n} dim(L(V,W))=dimFm,n

Linear Maps Thought of as Matrix Multiplication

  1. v 1 , v 2 , ⋯ &ThinSpace; , v n v_1,v_2,\cdots,v_n v1,v2,,vn V V V 的一组基. M ( v ) = ( c 1 c 2 ⋮ c n ) M(v)=\left( \begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right) M(v)=c1c2cn 其中 c 1 , c 2 , ⋯ &ThinSpace; , c n c_1,c_2,\cdots,c_n c1,c2,,cn 使得
    v = c 1 v 1 + c 2 v 2 + ⋯ + c n v n v=c_1v_1+c_2v_2+\cdots+c_nv_n v=c1v1+c2v2++cnvn

  2. 根据定义可得 M ( T ) . , k = M ( T v k ) M(T)_{.,k}=M(Tv_k) M(T).,k=M(Tvk)

  3. T ∈ L ( V , W ) , v ∈ V T\in L(V,W),v\in V TL(V,W),vV , 假设 v 1 , v 2 , ⋯ &ThinSpace; , v n v_1,v_2,\cdots,v_n v1,v2,,vn V V V 的一组基。而
    w 1 , w 2 , ⋯ &ThinSpace; , w m w_1,w_2,\cdots, w_m w1,w2,,wm W W W的一组基。那么 M ( T v ) = M ( T ) M ( v ) M(Tv)=M(T)M(v) M(Tv)=M(T)M(v)

    • T v = c 1 T v 1 + c 2 T v 2 + ⋯ + c n T v n Tv=c_1Tv_1+c_2Tv_2+\cdots+c_nTv_n Tv=c1Tv1+c2Tv2++cnTvn

    • M ( T v ) = c 1 M ( T v 1 ) + c 2 M ( T v 2 ) + ⋯ + c n M ( T v n ) = c 1 M ( T ) . , 1 + ⋯ + c n M ( T ) . , n = M ( T ) M ( v ) M(Tv)=c_1M(Tv_1)+c_2M(Tv_2)+\cdots+c_nM(Tv_n)=c_1M(T)_{.,1}+\cdots+c_nM(T)_{.,n}=M(T)M(v) M(Tv)=c1M(Tv1)+c2M(Tv2)++cnM(Tvn)=c1M(T).,1++cnM(T).,n=M(T)M(v)

Operators

算子是非常重要的概念,后面和这本书,最重要的基础

  1. 一个集合到其自身的线性映射叫做算子。

  2. L ( V ) = L ( V , V ) L(V)=L(V,V) L(V)=L(V,V) V V V上的所有算子。

  3. 假设 V V V是有限空间 T ∈ L ( V ) T\in L(V) TL(V),那么下面的三个命题,互相等价。

    • T 是可逆的线性映射

    • T 是单射

    • T 是满射

    Proof

    • 有前面可逆矩线性变换的充要条件可得。 T T T
      可逆的充要条件为满射和单射。

    • T T T如果是单射。那么 d i m ( n u l l T ) = 0 dim(null\bm{T})=0 dim(nullT)=0那么根据
      d i m ( r a n g e T ) = d i m ( V ) − d i m ( n u l l T ) = d i m ( V ) dim(range\bm{T})=dim(V)-dim(null\bm{T})=dim(V) dim(rangeT)=dim(V)dim(nullT)=dim(V)
      也就是 T T T满射,进而可以推出可逆。

  4. 同理可以通过满射推导单射

3.E Products and Quotients of Vectors Spaces

Products of Vector Spaces

  1. V 1 × V 2 × ⋯ × V m V_1\times V_2\times \cdots \times V_m V1×V2××Vm 的定义
    V 1 × V 2 × ⋯ × V m = { ( v 1 , v 2 , ⋯ &ThinSpace; , v m ) : v 1 ∈ V 1 , ⋯ &ThinSpace; , v m ∈ V m } V_1\times V_2\times \cdots \times V_m=\{(v_1,v_2,\cdots, v_m):v_1\in V_1,\cdots,v_m\in V_m\} V1×V2××Vm={(v1,v2,,vm):v1V1,,vmVm}

  2. 从定义很容易可以证明 V 1 × V 2 × ⋯ × V m V_1\times V_2\times \cdots \times V_m V1×V2××Vm
    是一个向量空间

  3. d i m ( V 1 × V 2 × ⋯ × V m ) = d i m ( V 1 ) + d i m ( V 2 ) + ⋯ + d i m ( V m ) dim(V_1\times V_2\times \cdots \times V_m)=dim(V_1)+dim(V_2)+\cdots+dim(V_m) dim(V1×V2××Vm)=dim(V1)+dim(V2)++dim(Vm)

    • 类似通过观察 P 2 ( R ) × R 2 P_2(R)\times R^2 P2(R)×R2的基来证明这个问题

    • ( 0 , ( 0 , 0 ) ) , ( x , ( 0 , 0 ) ) , ( x 2 , ( 0 , 0 ) ) , ( 0 , ( 1 , 0 ) ) , ( 0 , ( 0 , 1 ) ) (0,(0,0)),(x,(0,0)), (x^2,(0,0)),(0,(1,0)),(0,(0,1)) (0,(0,0)),(x,(0,0)),(x2,(0,0)),(0,(1,0)),(0,(0,1))

    • 也就是说,当一个空间的基变化时,其它空间的基就为0

Products and Direct Sums

  1. 首先定义映射 Γ : U 1 × U 2 × ⋯ × U m → U 1 + U 2 + ⋯ + U m \Gamma:U_1\times U_2\times \cdots \times U_m\rightarrow U_1+U_2+\cdots+U_m Γ:U1×U2××UmU1+U2++Um
    Γ ( u 1 , u 2 , ⋯ &ThinSpace; , u m ) = u 1 + u 2 + ⋯ + u m \Gamma(u_1,u_2,\cdots,u_m)=u_1+u_2+\cdots+u_m Γ(u1,u2,,um)=u1+u2++um

    那么命题是: U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um是直和的充要条件是 Γ \Gamma Γ是单射。

    • 前面1.C中 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um是直和的充要条件是 u 1 + u 2 + ⋯ + u m = 0 u_1+u_2+\cdots+u_m=0 u1+u2++um=0
      有一个形式也就是 u j = 0 , j ∈ ( 1 , 2 , ⋯ &ThinSpace; , m ) u_j=0,j\in (1,2,\cdots,m) uj=0,j(1,2,,m)

    • 从一个方向证明。 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um是直和,那么0的表示形式就只有一种。
      那么 d i m ( n u l l ( Γ ) ) = 0 dim(null(\Gamma))=0 dim(null(Γ))=0,那么 Γ \Gamma Γ就是单射

    • 从另一个方向证明,如果 Γ \Gamma Γ是单射,那么 d i m ( n u l l ( Γ ) ) = 0 dim(null(\Gamma))=0 dim(null(Γ))=0。进而我们
      可以得出0只有一种表示形式,那么 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um就是一个直和。

  2. U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um是直和的充要条件是
    d i m ( U 1 + U 2 + ⋯ + U m ) = d i m ( U 1 ) + d i m ( U 2 ) + ⋯ + d i m ( U m ) dim(U_1+U_2+\cdots+U_m)=dim(U_1)+dim(U_2)+\cdots+dim(U_m) dim(U1+U2++Um)=dim(U1)+dim(U2)++dim(Um)

    • 从一个方向证明:如果 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um是直积。那么 Γ \Gamma Γ是单射。也就
      是说 d i m ( n u l l Γ ) = 0 dim(null \Gamma)=0 dim(nullΓ)=0也即是说按照定理3.B得。
      d i m ( U 1 + U 2 + ⋯ + U m ) = d i m ( U 1 × U 2 × ⋯ × U m ) = d i m ( U 1 ) + ⋯ + d i m ( U m ) dim(U_1+U_2+\cdots+U_m)=dim(U_1\times U_2\times \cdots \times U_m)=dim(U_1)+\cdots+dim(U_m) dim(U1+U2++Um)=dim(U1×U2××Um)=dim(U1)++dim(Um)

    • 反之从另一个方向也是。

Quotients of Vector Spaces

  1. v + U v+U v+U 定义 v + U = { v + u : u ∈ U } v+U=\{v+u:u\in U\} v+U={v+u:uU}

  2. affine subset:(注意是affine subset,不是一个子空间,在 v = 0 v=0 v=0的时
    候才是一个子空间),V的一个affine subset 被定义为: v + U , v ∈ V v+U, v\in V v+U,vV,
    U U U V V V 的子空间。

  3. 平行的定义: v + U v+U v+U平行于 U U U

  4. quotient space V / U \bm{V/U} V/U V / U = { v + U : v ∈ V } V/U=\{v+U:v\in V\} V/U={v+U:vV}

  5. 两个平行于 U U U的affine subset
    要么相等要么不想交。也就是说下面三个命题等价

    • v − w ∈ U v-w\in U vwU

    • v + U = w + U v+U=w+U v+U=w+U

    • ( v + U ) ∪ ( w + U ) ≠ ∅ (v+U)\cup (w+U)\neq \varnothing (v+U)(w+U)̸=

    可以用循环证明: a → b → c → a a\rightarrow b \rightarrow c \rightarrow a abca
    这样就可以得到佐 证。

    proof

    1. a ⇒ b a\Rightarrow b ab也就是 v − w ∈ U ⇒ v + U = w + U v-w\in U \Rightarrow v+U=w+U vwUv+U=w+U

      • v + u = w + ( v − w + u ) ∈ w + U ⇒ v + U ⊆ w + U v+u=w+(v-w+u)\in w+U\Rightarrow v+U\subseteq w+U v+u=w+(vw+u)w+Uv+Uw+U

      • 同理 w + U ⊆ v + U w+U\subseteq v+U w+Uv+U

      • w + U = v + U w+U=v+U w+U=v+U

    2. b ⇒ c b\Rightarrow c bc 也就是 v + U = w + U ⇒ ( v + U ) ∪ ( w + U ) ≠ ∅ v+U=w+U\Rightarrow (v+U)\cup (w+U)\neq \varnothing v+U=w+U(v+U)(w+U)̸= 这一步是定义就能证明

    3. c ⇒ a c\Rightarrow a ca
      也就是 ( v + U ) ∪ ( w + U ) ≠ ∅ ⇒ v − w ∈ U (v+U)\cup (w+U)\neq \varnothing\Rightarrow v-w\in U (v+U)(w+U)̸=vwU

      • u 1 , u 2 ∈ U u_1,u_2\in U u1,u2U

      • v + u 1 = w + u 2 ⇒ v − w = u 2 − u 1 ∈ U v+u_1=w+u_2\Rightarrow v-w=u_2-u_1\in U v+u1=w+u2vw=u2u1U

  6. V / U V/U V/U 是一个向量空间

  7. π : V → V / U \pi: V\rightarrow V/U π:VV/U 定义 π ( v ) = v + U \pi(v)=v+U π(v)=v+U

  8. d i m ( V / U ) = d i m ( V ) − d i m ( U ) dim(V/U)=dim(V)-dim(U) dim(V/U)=dim(V)dim(U)

    • n u l l π = U null\pi = U nullπ=U

    • r a n g e π = V / U range\pi = V/U rangeπ=V/U

    • 根据先前的定理 d i m ( V ) = d i m ( U ) + d i m ( V / U ) dim(V) = dim(U) +dim(V/U) dim(V)=dim(U)+dim(V/U)

  9. T ~ : V / ( n u l l T ) → W \tilde{T}:V/(nullT)\rightarrow W T~:V/(nullT)W T ~ ( v + n u l l T ) = T v \tilde{T}(v+nullT)=Tv T~(v+nullT)=Tv

  10. 以下几个命题成立

    1. T ~ \tilde{T} T~ 是一个从 V / n u l l T → W V/nullT\rightarrow W V/nullTW 的线性映射

    2. T ~ \tilde{T} T~ 是单射

      • T ~ ( v + n u l l T ) = 0 ⇒ T v = 0 ⇒ v ∈ n u l l T \tilde{T}(v+nullT)=0\Rightarrow Tv=0\Rightarrow v\in nullT T~(v+nullT)=0Tv=0vnullT

      • v ∈ n u l l T ⇒ v + n u l l T = 0 + n u l l T ⇒ n u l l T ~ = 0 v\in nullT\Rightarrow v+nullT=0+nullT\Rightarrow null\tilde{T}=0 vnullTv+nullT=0+nullTnullT~=0

      • 也就是说这是一个单射

    3. r a n g e T ~ = r a n g e T range\tilde{T}=range T rangeT~=rangeT

      • 从定义中很容易看出来
    4. V / n u l l T V/nullT V/nullT r a n g e T rangeT rangeT 同构

      • 从前面连个结论可惜看出, V / ( n u l l T ) → r a n g e T V/(nullT)\rightarrow rangeT V/(nullT)rangeT是单射和满射。所以就可以得出两者同

3.F Duality

The Dual Space and the Dual Map

  1. 线性函数,定义为 L ( V , F ) L(V,F) L(V,F)

  2. 对偶空间 V ′ V^{&#x27;} V,从V到F的所有线性函数的集合 V ′ = L ( V , F ) V^{&#x27;}=L(V,F) V=L(V,F)

  3. d i m V ′ = d i m V dimV^{&#x27;}=dimV dimV=dimV

    • L ( V , F ) = d i m V × d i m F = d i m V × 1 = d i m V L(V,F)=dimV\times dimF=dimV\times 1=dimV L(V,F)=dimV×dimF=dimV×1=dimV
  4. 对偶空间的基的定义,对偶空间的基于 V V V空间的基有对应关系

    • 如果 v 1 , v 2 , ⋯ &ThinSpace; , v n v_1,v_2,\cdots,v_n v1,v2,,vn V V V空间中的一组基,那么
      φ 1 , ⋯ &ThinSpace; , φ n \varphi_1,\cdots,\varphi_n φ1,,φn V ′ V^{&#x27;} V的一组基,只要
      φ j ( v k ) = { 1 , k = j 0 , k ≠ j \varphi_j(v_k)=\left\{ \begin{aligned} 1,k=j\\ 0,k\neq j \end{aligned} \right. φj(vk)={1,k=j0,k̸=j
  5. 证明上面的定义是 V ′ V^{&#x27;} V的一组基

    • a 1 φ 1 + ⋯ + a n φ n = 0 a_1\varphi_1+\cdots+a_n\varphi_n=0 a1φ1++anφn=0

    • ( a 1 φ 1 + ⋯ + a n φ n ) ( v j ) = a j , j ∈ ( 1 , 2 , ⋯ &ThinSpace; , n ) (a_1\varphi_1+\cdots+a_n\varphi_n)(v_j)=a_j,j\in(1,2,\cdots,n) (a1φ1++anφn)(vj)=aj,j(1,2,,n)都得是0

    • 那么只能是 a 1 = ⋯ = a n = 0 a_1=\cdots=a_n=0 a1==an=0

    • 这就证明了, φ 1 , ⋯ &ThinSpace; , φ n \varphi_1,\cdots,\varphi_n φ1,,φn是一组基。

  6. 对偶映射, L ( V , W ) L(V,W) L(V,W)的对偶映射是 L ( W ′ , V ′ ) L(W^{&#x27;},V^{&#x27;}) L(W,V),其中
    T ′ ( φ ) = φ ∘ T , φ ∈ W ′ T^{&#x27;}(\varphi)=\varphi\circ T,\varphi \in W^{&#x27;} T(φ)=φT,φW

  7. 对偶映射的性质

    • ( S + T ) ′ = S ′ + T ′ , S , T ∈ L ( V , W ) (S+T)^{&#x27;}=S^{&#x27;}+T^{&#x27;}, S,T\in L(V,W) (S+T)=S+T,S,TL(V,W)

    • ( λ T ) ′ = λ T ′ , T ∈ L ( V , W ) (\lambda T)^{&#x27;}=\lambda T^{&#x27;}, T\in L(V,W) (λT)=λT,TL(V,W)

    • ( S T ) ′ = T ′ S ′ , T ∈ L ( U , V ) , S ∈ L ( V , W ) (ST)^{&#x27;}=T^{&#x27;}S^{&#x27;},T\in L(U,V), S\in L(V,W) (ST)=TS,TL(U,V),SL(V,W)

The Null Space and Range of the Dual of a linear Map

  1. annihilator, U 0 U^0 U0
    U 0 = { φ ∈ V ′ : φ ( u ) = 0 , u ∈ U } U^{0}=\{\varphi\in V^{&#x27;}:\varphi(u)=0,u\in U\} U0={φV:φ(u)=0,uU}

  2. U 0 U^{0} U0 V ′ V^{&#x27;} V的一个子空间

    • { 0 } 0 = V ′ \{0\}^{0}=V^{&#x27;} {0}0=V

    • V 0 = { 0 } V^{0}=\{0\} V0={0}

  3. d i m U + d i m U 0 = d i m V dimU+dimU^0=dimV dimU+dimU0=dimV

    • 假设 i ∈ L ( U , V ) i\in L(U,V) iL(U,V)定义为 i ( u ) = u , u ∈ U i(u)=u,u\in U i(u)=u,uU

    • i ′ i^{&#x27;} i 就是一个 V ′ → U ′ V^{&#x27;}\rightarrow U^{&#x27;} VU的一个对偶映射。
      d i m ( r a n g e ( i ′ ) ) + d i m ( n u l l ( i ′ ) ) = d i m V ′ dim(range(i^{&#x27;}))+dim(null(i^{&#x27;}))=dimV^{&#x27;} dim(range(i))+dim(null(i))=dimV

    • 从定义可知 n u l l i ′ = U 0 null i^{&#x27;}=U^{0} nulli=U0 因为
      φ ∈ V ′ , φ ∘ i ( u ) = 0 , u ∈ U \varphi \in V^{&#x27;},\varphi\circ i (u)=0,u\in U φV,φi(u)=0,uU

    • φ ∈ U ′ \varphi \in U^{&#x27;} φU,这个 φ \varphi φ函数可以扩展为 V ′ V^{&#x27;} V里的 Ψ \varPsi Ψ。也
      就是说 i ′ ( Ψ ) = φ i^{&#x27;}(\varPsi)=\varphi i(Ψ)=φ, r a n g e i ′ = U ′ range i^{&#x27;}=U^{&#x27;} rangei=U

    • 最后替换可得证。

  4. T ′ T^{&#x27;} T 的null 空间。

    • n u l l T ′ = ( r a n g e T ) 0 null T^{&#x27;}=(range T)^{0} nullT=(rangeT)0

      • φ ∈ n u l l T ′ ⇒ 0 = T ′ ( φ ) = φ ∘ T \varphi \in nullT^{&#x27;}\Rightarrow 0=T^{&#x27;}(\varphi)=\varphi\circ T φnullT0=T(φ)=φT

      • 也就是说 φ ∈ ( r a n g e T ) 0 ⇒ n u l l T ′ ⊆ ( r a n g e T ) 0 \varphi \in (rangeT)^{0}\Rightarrow nullT^{&#x27;}\subseteq (rangeT)^{0} φ(rangeT)0nullT(rangeT)0

      • φ ∈ ( r a n g e T ) 0 ⇒ φ ( T v ) = 0 , ∀ v ∈ V \varphi\in (rangeT)^{0}\Rightarrow \varphi(Tv)=0,\forall v\in V φ(rangeT)0φ(Tv)=0,vV

      • 0 = φ ∘ T = T ′ ( φ ) ⇒ ( r a n g e T ) 0 ⊆ n u l l T ′ 0=\varphi\circ T=T^{&#x27;}(\varphi)\Rightarrow (rangeT)^{0}\subseteq nullT^{&#x27;} 0=φT=T(φ)(rangeT)0nullT

      • 最后结论是 n u l l T ′ = ( r a n g e T ) 0 null T^{&#x27;}=(range T)^{0} nullT=(rangeT)0

    • d i m ( n u l l T ′ ) = d i m ( n u l l T ) + d i m ( W ) − d i m ( V ) dim(nullT^{&#x27;})=dim(nullT)+dim(W)-dim(V) dim(nullT)=dim(nullT)+dim(W)dim(V) { d i m ( n u l l T ′ ) = d i m ( r a n g e T ) 0 = d i m ( W ) − d i m ( r a n g e T ) = d i m ( W ) − ( d i m ( V ) − d i m ( n u l l T ) ) = d i m ( n u l l T ) + d i m W − d i m V \left\{ \begin{aligned} dim(nullT^{&#x27;})=&amp;dim(rangeT)^0\\ =&amp;dim(W)-dim(rangeT)\\ =&amp;dim(W)-(dim(V)-dim(nullT))\\ =&amp;dim(nullT)+dimW-dimV \end{aligned} \right. dim(nullT)====dim(rangeT)0dim(W)dim(rangeT)dim(W)(dim(V)dim(nullT))dim(nullT)+dimWdimV

  5. T T T 是满射的充要条件是 T ′ T^{&#x27;} T是单射

    • T T T是满射的充要条件是 r a n g e T = W ⇔ ( r a n g e T ) 0 = { 0 } rangeT=W\Leftrightarrow (rangeT)^0=\{0\} rangeT=W(rangeT)0={0}

    • ( r a n g e T ) 0 = { 0 } ⇔ n u l l T ′ = { 0 } ⇔ T ′ (rangeT)^0=\{0\}\Leftrightarrow nullT^{&#x27;}=\{0\}\Leftrightarrow T^{&#x27;} (rangeT)0={0}nullT={0}T
      单射

  6. The range of T ′ T^{&#x27;} T

    • d i m ( r a n g e T ′ ) = d i m ( r a n g e T ) dim(rangeT^{&#x27;})=dim(rangeT) dim(rangeT)=dim(rangeT)

      • { d i m ( r a n g e T ′ ) = d i m W ′ − d i m ( n u l l T ′ ) = d i m W − d i m ( r a n g e T ) 0 = d i m ( r a n g e T ) \left\{ \begin{aligned} dim(rangeT^{&#x27;})=&amp; dimW^{&#x27;}-dim(nullT^{&#x27;})\\ =&amp; dimW-dim(rangeT)^{0}\\ =&amp; dim(rangeT) \end{aligned} \right. dim(rangeT)===dimWdim(nullT)dimWdim(rangeT)0dim(rangeT)
    • r a n g e T ′ = ( n u l l T ) 0 rangeT^{&#x27;}=(nullT)^{0} rangeT=(nullT)0

      • φ ∈ r a n g e T ′ , Ψ ∈ W ′ , φ = T ′ ( Ψ ) , v ∈ N u l l T \varphi\in rangeT^{&#x27;},\varPsi\in W^{&#x27;},\varphi = T^{&#x27;}(\varPsi), v\in NullT φrangeT,ΨW,φ=T(Ψ),vNullT
        Φ ( v ) = ( T ′ ( Ψ ) ) v = ( Ψ ∘ T ) ( v ) = Ψ ( T v ) = Ψ ( 0 ) = 0 \varPhi(v)=(T^{&#x27;}(\varPsi))v=(\varPsi\circ T)(v)=\varPsi(Tv)=\varPsi(0)=0 Φ(v)=(T(Ψ))v=(ΨT)(v)=Ψ(Tv)=Ψ(0)=0

      • 也就是说 T ′ ⊆ ( n u l l T ) 0 T^{&#x27;}\subseteq (nullT)^{0} T(nullT)0

      • { d i m r a n g e T ′ = d i m r a n g e T = d i m V − d i m n u l l T = d i m ( n u l l T ) 0 \left\{ \begin{aligned} dim rangeT^{&#x27;}=&amp;dimrangeT\\ =&amp; dim V-dim null T\\ =&amp; dim(nullT)^0 \end{aligned} \right. dimrangeT===dimrangeTdimVdimnullTdim(nullT)0

  7. T T T 是单射的充分必要条件是 T ′ T^{&#x27;} T是满射

    • T T T单射的充要条件是 n u l l T = { 0 } nullT=\{0\} nullT={0}

    • n u l l T = { 0 } ⇔ ( n u l l T ) 0 = V ′ ⇔ r a n g e T ′ = V ′ nullT=\{0\}\Leftrightarrow (nullT)^{0}=V^{&#x27;}\Leftrightarrow rangeT^{&#x27;}=V^{&#x27;} nullT={0}(nullT)0=VrangeT=V

    • 也就是说 T T T 是单射的充分必要条件是 T ′ T^{&#x27;} T是满射

  8. M ( T ′ ) = ( M ( T ) ) t M(T^{&#x27;})=(M(T))^{t} M(T)=(M(T))t

    • T ′ ( Ψ j ) = ∑ r = 1 n C r , j φ r T^{&#x27;}(\varPsi_j)=\sum_{r=1}^{n}C_{r,j}\varphi_r T(Ψj)=r=1nCr,jφr

    • ( Ψ j ∘ T ) ( v k ) = ∑ r = 1 n C r , j φ r ( v k ) = C k , j (\varPsi_j\circ T)(v_k)=\sum_{r=1}^{n}C_{r,j}\varphi_r(v_k)=C_{k,j} (ΨjT)(vk)=r=1nCr,jφr(vk)=Ck,j

    • ( Ψ j ∘ T ) ( v k ) = Ψ j ( T v k ) = Ψ j ( ∑ r = 1 m A r , k w r ) = ∑ r = 1 m A r , k Ψ j ( w r ) = A j , k \begin{aligned} (\varPsi_j\circ T)(v_k)=&amp;\varPsi_j(Tv_k)\\ =&amp; \varPsi_j(\sum_{r=1}^{m}A_{r,k}w_r) \\ =&amp; \sum_{r=1}^{m}A_{r,k}\varPsi_{j}(w_r)\\ =&amp;A_{j,k} \end{aligned} (ΨjT)(vk)====Ψj(Tvk)Ψj(r=1mAr,kwr)r=1mAr,kΨj(wr)Aj,k

  9. d i m r a n g e T = M ( T ) dim rangeT=M(T) dimrangeT=M(T)的列秩

    • r a n g e T = s p a n ( T v 1 , T v 2 , ⋯ &ThinSpace; , T v n ) ⇔ d i m r a n g e T = d i m s p a n ( T v 1 , ⋯ &ThinSpace; , T v n ) = M ( T ) rangeT=span(Tv_1,Tv_2,\cdots,Tv_n)\Leftrightarrow dim rangeT=dim span(Tv_1,\cdots,Tv_n)=M(T) rangeT=span(Tv1,Tv2,,Tvn)dimrangeT=dimspan(Tv1,,Tvn)=M(T)的列秩。
  10. 矩阵的行秩等于矩阵的列秩

    • c o l u m n − r a n k − o f ( M ( T ) ) = d i m r a n g e T = d i m r a n g e T ′ = c o l u m n − r a n k − o f ( M ( T ′ ) ) = c o l u m n − r a n k − o f ( A t ) = r o w − r a n k − o f ( A ) \begin{aligned} column-rank-of(M(T))=&amp; dimrangeT\\ =&amp; dim rangeT^{&#x27;}\\ =&amp; column-rank-of(M(T^{&#x27;}))\\ =&amp; column-rank-of(A^t)\\ =&amp; row-rank-of(A) \end{aligned} columnrankof(M(T))=====dimrangeTdimrangeTcolumnrankof(M(T))columnrankof(At)rowrankof(A)
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值