有 nvidia 4GB 显存的设备,就可以搭建一个用于 LLM 的基本开发环境。
比如这里使用的是 NVIDIA GeForce GTX 1650
, 4GB 显存。
基本思路
-
消耗显存主要是
- LLM,大语言模型,如果使用
Qwen2:1.5b
,大约消耗 2GB,如果是Qwen2:0.5b
,则更小 - embedding,嵌入模型,
bge-large-zh-v1.5@f16
, 大约消耗 1.2GB
- LLM,大语言模型,如果使用
-
基础开发环境用于测试程序是否能跑通,因此可以先用本地小模型
-
如果需要更大的模型,可以再使用云端模型
-
切换本地模型和云端模型很容易,因为使用 one-api 统一了本地和云端模型的调用接口
-
调用模型调试代码,采用 JupyterLab 笔记
实现技术
- 使用 docker 容器方式运行,通过 compose 管理 docker 容器
- 使用 Ollama 加载本地模型
- 使用 one-api 统一管理本地和云端模型,并提供统一的 OpenAI API 访问方式
- 使用 JupyterLab 提供 Web 界面的开发编辑工具
使用效果展示
操作步骤
基础环境
- Linux 环境,已经正确安装了 nvidia driver,并安装了 docker 和 compose
- Windws 环境,WSL2 的 Linux 虚拟机,安装了 docker 和 compose
下载源代码
bash
代码解读
复制代码
git clone https://github.com/MarshalW/llm-proto.git
docker 设置代理
如果能直接访问 docker 官方 registry,则不需要这一步。
下面脚本为 docker 设置代理服务器。
bash
代码解读
复制代码
# 代理配置
HTTP_PROXY="http://proxy.example.com:8080"
NO_PROXY="localhost,127.0.0.1,docker-registry.example.com,.corp"
# 配置文件路径
CONFIG_FILE="/etc/systemd/system/docker.service.d/http-proxy.conf"
# 创建目录(如果不存在)
mkdir -p "$(dirname "$CONFIG_FILE")"
# 写入配置文件
cat <<EOF | sudo tee "$CONFIG_FILE" > /dev/null
[Service]
Environment="HTTP_PROXY=$HTTP_PROXY"
Environment="HTTPS_PROXY=$HTTP_PROXY"
Environment="NO_PROXY=$NO_PROXY"
EOF
# 重新加载 systemd 配置
sudo systemctl daemon-reload
# 重启 Docker 服务
sudo systemctl restart docker
构建 JupyterLab docker 镜像
bash
代码解读
复制代码
cd llm-proto/jupyterlab
./build.sh
启动服务
bash
代码解读
复制代码
cd llm-proto
docker compose up -d
配置服务
Ollama 加载模型
bash
代码解读
复制代码
# 进入 ollama 容器
docker exec -it llms bash
# 拉取模型
ollama pull qwen2:1.5b
# 验证拉取成功
ollama ls
NAME ID SIZE MODIFIED
qwen2:1.5b f6daf2b25194 934 MB 5 hours ago
配置 one-api
访问: http://IP:4000
登录账号/密码: root/123456
配置本地模型
添加渠道
测试渠道
添加令牌
复制令牌备用
配置云端模型
以 智谱 GLM 为例
创建渠道(需要设置访问密钥):
访问 jupyterlab
浏览器访问 http://IP:8888
密码是 password
编写笔记,参考 MarshalW/jupyterlab-demos/blob/main/simple-oneapi.ipynb
总结
通过上述步骤,即可建立一个最基本的 LLM 技术开发环境,用于调试基于模型的基础代码。
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~