【LLM大模型】揭秘Langchain4j的Chat Memory功能!

0 前言

手动维护和管理ChatMessage比较繁琐。因此,LangChain4j 提供了ChatMemory抽象以及多个开箱即用的实现:

  • ChatMemory可以作为一个独立的底层组件使用
  • 也可作为类似AI服务等高级组件的一部分使用

ChatMemory作为ChatMessage的容器(基于List),并提供以下附加功能:

  • 驱逐策略
  • 持久化
  • SystemMessage的特殊处理
  • 对工具消息的特殊处理

1 内存 V.S 历史记录

“内存”和“历史记录”相似但有区别:

  • 历史记录会完整保留用户和 AI 之间的所有消息。历史记录是用户在界面中看到的内容,表示实际发生的对话。
  • 内存则保存部分信息,这些信息会提供给 LLM,使其看起来像是“记住”了对话内容。 内存与历史记录非常不同,根据使用的内存算法,它可以以多种方式修改历史记录: 驱逐某些消息,总结多条消息,提取独立消息的摘要,去除不重要的细节,注入额外信息(如用于 RAG 的信息)或指令(如用于结构化输出的指令)到消息中等。

LangChain4j 当前仅提供“内存”,而非“历史记录”。如果您需要保留整个历史记录,请手动进行保存。

2 驱逐策略

2.1必要性
适应 LLM 的上下文窗口

LLM 能一次处理的 token 数是有限。在某些情况下,对话可能会超出这个限制,此时需要驱逐部分消息。 通常,最早的消息会被驱逐,但如果需要,也可以实现更复杂的算法。

控制成本

每个 token 都有成本,因此每次调用 LLM 的成本会逐渐增加。驱逐不必要的消息可以降低成本。

控制延迟

发送给 LLM 的 token 越多,处理时间越长。

目前,LangChain4j 提供两种开箱即用的

2.2 实现
简单的MessageWindowChatMemory

作为滑动窗口保留最近的N条消息,并驱逐不再符合条件的较旧消息。 由于每条消息包含的 token 数可能不同,MessageWindowChatMemory 主要用于快速原型开发。

复杂的TokenWindowChatMemory

也是滑动窗口,但重点是保留最近的Ntoken,并根据需要驱逐较旧的消息。 消息是不可分割的。如果某条消息不符合条件,它将被完全驱逐。 TokenWindowChatMemory 需要一个Tokenizer来统计每条ChatMessage中的 token 数。

3 持久化

默认情况下,ChatMemory的实现将ChatMessage存储在内存中。如需持久化,可以实现自定义的ChatMemoryStore, 将ChatMessage存储在您选择的任何持久存储中:

代码语言:java

复制

class PersistentChatMemoryStore implements ChatMemoryStore {

        @Override
        public List<ChatMessage> getMessages(Object memoryId) {
          // TODO: 实现通过内存 ID 从持久存储中获取所有消息的功能。
          // 可以使用 ChatMessageDeserializer.messageFromJson(String) 和 
          // ChatMessageDeserializer.messagesFromJson(String) 来轻松从 JSON 反序列化聊天消息。
        }

        @Override
        public void updateMessages(Object memoryId, List<ChatMessage> messages) {
            // TODO: 实现通过内存 ID 更新持久存储中的所有消息。
            // 可以使用 ChatMessageSerializer.messageToJson(ChatMessage) 和 
            // ChatMessageSerializer.messagesToJson(List<ChatMessage>) 来轻松将聊天消息序列化为 JSON。
        }

        @Override
        public void deleteMessages(Object memoryId) {
          // TODO: 实现通过内存 ID 删除持久存储中所有消息的功能。
        }
    }

ChatMemory chatMemory = MessageWindowChatMemory.builder()
        .id("12345")
        .maxMessages(10)
        .chatMemoryStore(new PersistentChatMemoryStore())
        .build();

每当新的ChatMessage添加到ChatMemory中时,updateMessages()方法就会被调用。 通常在每次与 LLM 交互的过程中,这个方法会被调用两次:

  • 一次是当添加新的UserMessage
  • 另一次是当添加新的AiMessage时。

updateMessages()方法需要更新与给定内存 ID 相关联的所有消息。 可以将ChatMessage分别存储(例如,每条消息一个记录/行/对象), 也可以将其一起存储(例如,整个ChatMemory作为一个记录/行/对象)。

ChatMemory中驱逐的消息也将从ChatMemoryStore中驱逐。 当某条消息被驱逐时,updateMessages()方法将被调用, 并且传递的消息列表不包含已驱逐的消息。

每当ChatMemory的用户请求所有消息时,都会调用getMessages()方法。 通常在每次与 LLM 交互时调用一次。 Object memoryId参数的值对应于创建ChatMemory时指定的id

它可以用于区分多个用户和/或对话。 getMessages()方法应该返回与给定内存 ID 相关联的所有消息。

每当调用ChatMemory.clear()时,都会调用deleteMessages()方法。 如果不使用此功能,可以将此方法留空。

4 SystemMessage的特殊处理

特殊的消息类型:

  • 一旦添加,SystemMessage将始终保留
  • 一次只能保存一个SystemMessage
  • 如添加相同内容的SystemMessage,则会被忽略
  • 如添加不同内容的SystemMessage,它将替换之前的消息

5 工具消息的特殊处理

如果包含ToolExecutionRequestAiMessage被驱逐, 后续的孤立ToolExecutionResultMessage也会自动被驱逐, 以避免某些 LLM 提供商(如 OpenAI)不允许在请求中发送孤立的ToolExecutionResultMessage的问题。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值