大模型在最近两年特别火,相信大家或多或少都听说过,那么大模型落地的应用场景,个人觉得RAG是现在能落地的应用场景之一
LLM的局限性
将大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因
- 知识的局限性:大模型对于一些实时性的、非公开的或离线的数据是无法获取到的。
- LLM可能不知道你私有的领域/业务知识
- LLM有时会在回答中生成看似合理但实际上是错误的信息
为什么会用到RAG
- 提高准确性: 通过检索相关的信息,RAG可以提高生成文本的准确性。
- 减少训练成本:与需要大量数据来训练的大型生成模型相比,RAG可以通过检索机制来减少所需的训练数据量,从而降低训练成本。
- 适应性强:RAG模型可以适应新的或不断变化的数据。由于它们能够检索最新的信息,因此在新数据和事件出现时,它们能够快速适应并生成相关的文本。
RAG概念
RAG(Retrieval Augmented Generation)顾名思义,通过检索外部数据,增强大模型的生成效果
RAG即检索增强生成,为LLM提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。
如果大家想体验RAG的效果,可以用扣子这个平台,也是非常的简单,基本上传文件就可以了,没有任何难度
阿里云百炼
这里我就不介绍向量和Embeddings了,包括向量数据库这些,如果想深入了解RAG,那么这部分内容大家可以去看看别的文章,本文主要给大家介绍-阿里云百炼这个平台,如何快速完成RAG
百炼网站:bailian.console.aliyun.com/#/home
首先登录阿里云百炼平台,创建一个应用
然后把文档上传上去
点击应用的管理,将我们上传的文档加载到这个应用里面,我这里没有写的特别详细,这都是界面,相信大家只要操作一下就能弄懂
基本就是创建一个应用,上传文件,创建数据索引(切片),然后将上传的数据配置到应用的知识库中,就是这么简单…
接下来就可以测试了
如果我们想利用代码去调用也是可以的
from http import HTTPStatus
from dashscope import Application
def call_agent_app():
response = Application.call(app_id='换成自己的',
prompt='Introduce the capital of China',
api_key='申请一个就行',)
if response.status_code != HTTPStatus.OK:
print('request_id=%s, code=%s, message=%s\n' % (response.request_id, response.status_code, response.message))
else:
print('request_id=%s\n output=%s\n usage=%s\n' % (response.request_id, response.output, response.usage))
if __name__ == '__main__':
call_agent_app()
prompt可以换成自己问的问题,也可以用streamlit简单写个界面,这样就完成了一个套壳百炼的RAG
import streamlit as st
from http import HTTPStatus
from dashscope import Application
# 定义调用代理应用的函数
def call_agent_app(prompt):
response = Application.call(app_id='xxx',
prompt=prompt,
api_key='xxx')
return response
# Streamlit 应用
def main():
st.title("与代理应用交互")
# 创建表单
with st.form(key="user_input_form"):
# 用户输入框
user_prompt = st.text_input("请输入您的问题:", "llama2有多少参数")
# 隐藏提交按钮,敲回车即可提交
submit_button = st.form_submit_button(label="提交")
if submit_button:
if user_prompt:
# 调用代理应用
response = call_agent_app(user_prompt)
# 检查响应状态
if response.status_code != HTTPStatus.OK:
st.error(
f'请求失败: request_id={response.request_id}, code={response.status_code}, message={response.message}')
else:
# st.success(f'请求成功: request_id={response.request_id}')
st.write(f'输出: {response.output.text}')
st.write(f'使用模型: {response.usage.models[0].model_id},输入token: {response.usage.models[0].input_tokens}, 输出token: {response.usage.models[0].output_tokens}')
else:
st.warning("请输入有效的问题!")
if __name__ == '__main__':
main()
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓