大模型落地应用:RAG快速落地-阿里云百炼

大模型在最近两年特别火,相信大家或多或少都听说过,那么大模型落地的应用场景,个人觉得RAG是现在能落地的应用场景之一

LLM的局限性

将大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因

  1. 知识的局限性:大模型对于一些实时性的、非公开的或离线的数据是无法获取到的。
  2. LLM可能不知道你私有的领域/业务知识
  3. LLM有时会在回答中生成看似合理但实际上是错误的信息

为什么会用到RAG

  1. 提高准确性: 通过检索相关的信息,RAG可以提高生成文本的准确性。
  2. 减少训练成本:与需要大量数据来训练的大型生成模型相比,RAG可以通过检索机制来减少所需的训练数据量,从而降低训练成本。
  3. 适应性强:RAG模型可以适应新的或不断变化的数据。由于它们能够检索最新的信息,因此在新数据和事件出现时,它们能够快速适应并生成相关的文本。

RAG概念

RAG(Retrieval Augmented Generation)顾名思义,通过检索外部数据,增强大模型的生成效果

RAG即检索增强生成,为LLM提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。

如果大家想体验RAG的效果,可以用扣子这个平台,也是非常的简单,基本上传文件就可以了,没有任何难度

阿里云百炼

这里我就不介绍向量和Embeddings了,包括向量数据库这些,如果想深入了解RAG,那么这部分内容大家可以去看看别的文章,本文主要给大家介绍-阿里云百炼这个平台,如何快速完成RAG

百炼网站:bailian.console.aliyun.com/#/home

首先登录阿里云百炼平台,创建一个应用

在这里插入图片描述

然后把文档上传上去

在这里插入图片描述

点击应用的管理,将我们上传的文档加载到这个应用里面,我这里没有写的特别详细,这都是界面,相信大家只要操作一下就能弄懂

基本就是创建一个应用,上传文件,创建数据索引(切片),然后将上传的数据配置到应用的知识库中,就是这么简单…

接下来就可以测试了

在这里插入图片描述

如果我们想利用代码去调用也是可以的

from http import HTTPStatus
from dashscope import Application

def call_agent_app():
    response = Application.call(app_id='换成自己的',
                                prompt='Introduce the capital of China',
                                api_key='申请一个就行',)

    if response.status_code != HTTPStatus.OK:
        print('request_id=%s, code=%s, message=%s\n' % (response.request_id, response.status_code, response.message))
    else:
        print('request_id=%s\n output=%s\n usage=%s\n' % (response.request_id, response.output, response.usage))

if __name__ == '__main__':
    call_agent_app()

prompt可以换成自己问的问题,也可以用streamlit简单写个界面,这样就完成了一个套壳百炼的RAG

import streamlit as st
from http import HTTPStatus
from dashscope import Application

# 定义调用代理应用的函数
def call_agent_app(prompt):
    response = Application.call(app_id='xxx',
                                prompt=prompt,
                                api_key='xxx')

    return response

# Streamlit 应用
def main():
    st.title("与代理应用交互")

    # 创建表单
    with st.form(key="user_input_form"):
        # 用户输入框
        user_prompt = st.text_input("请输入您的问题:", "llama2有多少参数")

        # 隐藏提交按钮,敲回车即可提交
        submit_button = st.form_submit_button(label="提交")

    if submit_button:
        if user_prompt:
            # 调用代理应用
            response = call_agent_app(user_prompt)

            # 检查响应状态
            if response.status_code != HTTPStatus.OK:
                st.error(
                    f'请求失败: request_id={response.request_id}, code={response.status_code}, message={response.message}')
            else:
                # st.success(f'请求成功: request_id={response.request_id}')
                st.write(f'输出: {response.output.text}')
                st.write(f'使用模型: {response.usage.models[0].model_id},输入token: {response.usage.models[0].input_tokens}, 输出token: {response.usage.models[0].output_tokens}')
        else:
            st.warning("请输入有效的问题!")

if __name__ == '__main__':
    main()

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值