2024年2月21日,Google发布了最新的开放模型Gemma。这是一系列轻量级、最先进的开放模型,使用了与创建Gemini模型相同的研究和技术,由Google DeepMind和Google其他团队共同开发。
今天我来分享如何在本地环境运行Gemma。我利用非常流行的大模型本地化工具Ollama,并分享如何基于Ollama API来与Gemma进行AI对话。
作为一款开放模型,Gemma对于使用做了如下声明:
根据声明,Google在Gemma上特意区分了Open Source,将模型定性为开放模型。这意味着个人开发者,研究员甚至商业用户都可以自由地使用和分发。关于开源模型和开发模型的区别,我将以一期单独的分享来介绍,敬请期待。
在上一期分享中,我通过Kaggle API来完成了Gemma模型的文本补全。大家可以通过我的python notebook来试用并评估:
https://github.com/sugarforever/open-source-llms/blob/main/google_gemma_get_started.ipynb
作为一款开放使用的大模型,行业主流的大模型管理工具自然是不会错过的,Ollama也不例外。
Ollama用于在本地运行开源LLMs,包括Mistral和Llama 2等。Ollama将模型权重、配置和数据集捆绑到一个统一的包中,由Modelfile管理。
现在我们先来到Ollama的模型页面,看看它对Gemma的支持情况。
从tag页面可见,Ollama支持Gemma的不同模型尺寸和类型。请大家务必升级Ollama到0.1.26或以上版本,以确保模型正常工作。
我们通过命令行和ChatOllama来分别演示如何下载并与Gemma聊天。
命令行
通过以下命令轻松下载Gemma模型,并通过交互界面聊天。
xyz@0987654321 ~ % ollama pull gemma:2b``xyz@0987654321 ~ % ollama run gemma:2b``>>> Ollama is``Sure, ollama is a type of camel. It is a large herbivore with a long neck and a hump on its back. Ollamas are native to the desert` `regions of North Africa and the Middle East, where they live in herds of up to 100 individuals.``
ChatOllama
除了命令行,开发者还可以利用一系列开源的Ollama UI应用来管理Ollama.
ChatOllama是我近期开发的一个简单的Web应用。它可以完成模型下载,支持与模型聊天。
下载gemma:2b
与gemma:2b聊天
好了,非常简单的操作就能在本地运行Gemma模型。接下来该做的就是让它帮助我们完成更加有意义的任务。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓