大家好!今天我们来学习如何使用Python实现一个基于RAG(检索增强生成)的知识库问答系统。这个系统能够基于我们自己的文档资料来回答问题,让AI更懂"我们的业务"。
1. RAG技术简介
RAG技术就像是给AI装了一个"活字典"。不同于传统大模型仅依赖训练时的知识,RAG可以实时查询外部知识库,用最新最相关的信息来回答问题。
比如你问:“公司的年假制度是什么?”,系统会:
1. 先从企业文档中找到相关规定
2. 然后让AI理解并组织语言
3. 最后给出准确的回答
2. 核心组件实现
2.1 文档加载和向量化
`from langchain.document_loaders import DirectoryLoader``from langchain.text_splitter import RecursiveCharacterTextSplitter``from langchain.embeddings import OpenAIEmbeddings``from langchain.vectorstores import FAISS`` ``loader = DirectoryLoader('./docs', glob="**/*.txt")``documents = loader.load()`` ``text_splitter = RecursiveCharacterTextSplitter(` `chunk_size=1000,` `chunk_overlap=200``)``texts = text_splitter.split_documents(documents)`` ``embeddings = OpenAIEmbeddings()``vectorstore = FAISS.from_documents(texts, embeddings)`
小贴士: 选择合适的chunk_size很重要!太大会影响相关性,太小可能会截断上下文。一般建议500-1500之间。
2.2 检索问答链实现
`from langchain.chat_models import ChatOpenAI``from langchain.chains import RetrievalQA``from langchain.prompts import PromptTemplate`` ``template = """根据以下已知信息,简洁专业地回答问题。如果无法从中得到答案,请说"抱歉,没有找到相关信息"。`` ``已知信息:{context}`` ``问题:{question}`` ``回答:"""`` ``PROMPT = PromptTemplate(` `template=template,` `input_variables=["context", "question"]``)`` ``llm = ChatOpenAI(temperature=0)``qa_chain = RetrievalQA.from_chain_type(` `llm=llm,` `chain_type="stuff",` `retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),` `chain_type_kwargs={"prompt": PROMPT}``)`
3. Web服务部署
`from fastapi import FastAPI``from pydantic import BaseModel`` ``app = FastAPI()`` ``class Question(BaseModel):` `text: str`` ``@app.post("/ask")``async def answer_question(question: Question):` `try:` `result = qa_chain.run(question.text)` `return {"answer": result}` `except Exception as e:` `return {"error": str(e)}`
注意事项:
- 部署前要做好错误处理和速率限制
- 建议添加缓存机制,避免重复计算
- 记得设置合适的超时时间
实践小作业
-
尝试添加文档预处理功能,支持PDF、Word等格式
-
实现问答历史记录功能
-
添加相似问题推荐功能
总结
今天我们学习了:
- RAG技术的基本原理
- 文档向量化和存储
- 检索问答链的实现
- 简单的服务部署
下一步,你可以尝试:
- 优化文本分割策略
- 实现多数据源支持
- 添加用户反馈机制
记住:实践是最好的学习方式!快动手试试吧!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓