QwQ-32B 测评和使用教程来了!

昨天凌晨,阿里开源了全新的推理模型:QwQ-32B。据官方发布消息,该模型性能比肩满血版 DeepSeek-R1(671B)!

可以看到在官方放出的评测图中, QwQ-32B 与满血版 DeepSeek R1(671B)在五项基准测试的得分不相上下,更是远超同尺寸 R1 蒸馏模型。

看到了这些消息后,我就开始上手深度测试。

QwQ-32B开源链接:

魔搭开源链接:https://modelscope.cn/models/Qwen/QwQ-32B

huggingface开源链接:https://huggingface.co/Qwen/QwQ-32B

在线体验地址:

https://chat.qwen.ai/?models=Qwen2.5-Plus

本地部署:保姆级实战教程

我在 AutoDL 上租用一张 4090,本地部署了一个 QwQ-32B-AWQ 量化版本。

写了个保姆级部署教程,因篇幅原因,大家可以按需查看~

教程地址:https://datawhaler.feishu.cn/docx/Wz2NdqSx1oEZsuxB9zHcEQ20nNe

根据命令行打印的信息可以看到模型在一张 4090 GPU 上完美运行。我给他测试了最近很火的问题:

9.11 和 9.9 哪个更大?

推理一共花了 21.39 秒,结果如下所示:

实测下来,QwQ-32B-AWQ 量化版本显存占用不到 18GB ,一张 4090 绰绰有余。而 32B 的 QwQ,也是完美适配消费级硬件。

性能实测

在 QwQ-32B 的性能方面,我分了代码能力、数学能力和逻辑能力三个维度进行测评。

首先是代码能力,我让它“编写一个 python 脚本,显示一个球在旋转的六边形内部弹跳。球应该受到重力和摩擦的影响,并且必须真实地弹跳 off 转动的墙壁。”

可以看到,整个球体的弹跳和撞击特别真实,就连小球带动大框的效果都做出来了,很好的还原了真实的物理场景。

而 Grok-3 在这个问题上直接就炸了,小球直接自由落体。

然后我试了试它的数学能力。最近正好考研成绩出了,我就拿了两道数一的考研题进行了测试:

题目一:回答完全正确。

题目二:回答完全正确。

数学和代码作为 QwQ-32B 的主攻方向,确实是效果极佳。

最后的逻辑推理能力实测来自 unlock-deepseek 项目群。

有一道很有意思的题目:

下面我会给你一道数学单选题,请选出正确答案。题目信息如下:

下面说法正确的是( ).

A:跳远测距离,根据的是两点之间线段最短.

B:跳高杆不会掉落,是因为两点确定一条直线.

C:多条跑道找捷径,根据的是垂线段最短.

D:同一路口白色斑马线互相平行,是因为过直线外一点有且只有一条直线与已知直线平行.

这道题有多难呢,大家可以试试看,模型的思考过程真的特别精彩,上演了足足 7 分多钟的左右脑互搏。。

但是 QwQ 还是回答出了正确答案。

结合数学、代码、逻辑推理三个维度的实测,QwQ 的实力还是挺强悍的,一点也不输几个主流的超大杯参数的推理模型。

Agent 相关能力:Function Call

QwQ-32B 中还集成了与 Agent(智能体)相关的能力,支持函数调用。于是我也测试使用了一下,搭建了一个股票数据分析 Agent:

import os``from openai import OpenAI``import efinance as ef``import json``# 设置模型的 API 地址``openai_api_base = "http://localhost:8000/v1"``api_key = "dummy_key"  # 本地部署不需要真实 key``# 实例化 OpenAI 客户端``client = OpenAI(`    `api_key=api_key,`    `base_url=openai_api_base,``)``# 定义可用的函数``def query_stock_code(stock_name):`    `"""查询股票代码"""`    `try:`        `stock_data = ef.stock.get_realtime_quotes(stock_name)`        `return stock_data.to_dict('records')`    `except Exception as e:`        `return {"error": str(e)}``def get_stock_history(stock_code, start_date=None, end_date=None):`    `"""获取股票历史数据"""`    `try:`        `history_data = ef.stock.get_quote_history(stock_code, start_date, end_date)`        `return history_data.to_dict('records')`    `except Exception as e:`        `return {"error": str(e)}``def get_stock_financial(stock_code):`    `"""获取股票财务数据"""`    `try:`        `financial_data = ef.stock.get_financial_report(stock_code)`        `return financial_data.to_dict('records')`    `except Exception as e:`        `return {"error": str(e)}``# 定义函数映射``function_map = {`    `"query_stock_code": query_stock_code,`    `"get_stock_history": get_stock_history,`    `"get_stock_financial": get_stock_financial``}``# 定义函数描述,用于告诉模型可用的函数``functions = [`    `{`        `"name": "query_stock_code",`        `"description": "查询股票的实时行情数据",`        `"parameters": {`            `"type": "object",`            `"properties": {`                `"stock_name": {`                    `"type": "string",`                    `"description": "股票名称或代码"`                `}`            `},`            `"required": ["stock_name"]`        `}`    `},`    `{`        `"name": "get_stock_history",`        `"description": "获取股票的历史行情数据",`        `"parameters": {`            `"type": "object",`            `"properties": {`                `"stock_code": {`                    `"type": "string",`                    `"description": "股票代码"`                `},`                `"start_date": {`                    `"type": "string",`                    `"description": "开始日期,格式为YYYY-MM-DD"`                `},`                `"end_date": {`                    `"type": "string",`                    `"description": "结束日期,格式为YYYY-MM-DD"`                `}`            `},`            `"required": ["stock_code"]`        `}`    `},`    `{`        `"name": "get_stock_financial",`        `"description": "获取股票的财务报表数据",`        `"parameters": {`            `"type": "object",`            `"properties": {`                `"stock_code": {`                    `"type": "string",`                    `"description": "股票代码"`                `}`            `},`            `"required": ["stock_code"]`        `}`    `}``]``def interactive_stock_query():`    `"""交互式股票查询功能"""`    `print("欢迎使用股票查询助手!您可以询问任何有关股票的问题。输入'退出'结束对话。")`        `# 保存对话历史`    `conversation_history = []`        `while True:`        `user_input = input("\n请输入您的问题: ")`        `if user_input.lower() in ['退出', 'exit', 'quit']:`            `print("感谢使用,再见!")`            `break`                `# 添加用户输入到对话历史`        `conversation_history.append({"role": "user", "content": user_input})`                `try:`            `# 调用模型,允许函数调用`            `response = client.chat.completions.create(`                `model="QwQ-32B",`                `messages=conversation_history,`                `functions=functions,`                `function_call="auto"`            `)`                        `assistant_message = response.choices[0].message`                        `# 添加助手回复到对话历史`            `conversation_history.append(assistant_message)`                        `# 检查是否有函数调用`            `if assistant_message.function_call:`                `function_call = assistant_message.function_call`                `function_name = function_call.name`                                `# 解析函数参数`                `try:`                    `function_args = json.loads(function_call.arguments)`                `except json.JSONDecodeError:`                    `print("函数参数解析错误")`                    `continue`                                `print(f"正在调用函数: {function_name}")`                                `# 执行函数`                `if function_name in function_map:`                    `function_to_call = function_map[function_name]`                    `function_response = function_to_call(**function_args)`                                        `# 将函数执行结果添加到对话历史`                    `conversation_history.append({`                        `"role": "function",`                        `"name": function_name,`                        `"content": json.dumps(function_response, ensure_ascii=False)`                    `})`                                        `# 再次调用模型,让它解释函数执行结果`                    `second_response = client.chat.completions.create(`                        `model="QwQ-32B",`                        `messages=conversation_history`                    `)`                                        `# 输出模型解释`                    `print("\n助手:", second_response.choices[0].message.content)`                                        `# 添加到对话历史`                    `conversation_history.append(second_response.choices[0].message)`                `else:`                    `print(f"未知函数: {function_name}")`            `else:`                `# 直接输出模型回复`                `print("\n助手:", assistant_message.content)`                        `except Exception as e:`            `print(f"发生错误: {str(e)}")``if __name__ == "__main__":`    `interactive_stock_query()

成果展示:

支持 Function Call 不仅增强了模型的实际应用能力,还能使它能够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。

写在最后

总体来说,这次通义开源的 QwQ-32B 推理模型还是很不错的:

  • 第一是 32B 小参数模型性能与超大参数的推理模型性能不相上下,做到了在保证性能的同时降低对计算资源的依赖,从而实现更加环保、可持续的AI技术发展;

  • 第二是响应速度也是相当不错的,不会遇到服务器繁忙的情况;

  • 第三是它支持 function call 功能,这一点对于模型开发来说有多重要就不必多说了。

如今,距离 o1 模型发布不过五个月,推理模型领域已经迎来了百花齐放的新局面。

犹记得前段时间大家还在全网寻找 "满血版"DeepSeek-R1 的使用渠道,转眼间就出现了小尺寸且性能强悍的 QwQ-32B 模型。这个量级在本地部署没太大压力,也可以在阿里云百炼平台调用 QwQ 的 API 进行开发。对于创业者、小型团队,或者想要做专业 AI 应用的公司而言,成本大大降低。

自 2023 年 8 月以来,通义千问累计开源了 200 多款模型。很低调,但在做实事,真正在推动大模型技术的普惠和应用的落地,促进国内大模型生态的繁荣。

向通义千问团队致敬。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值