Eigen使用

本文探讨了矩阵计算中Eigen库的LLT分解和求解,比较了Eigen的norm()和GLM的length()函数,以及向量归一化的两种方法normalize()和normalized()。还介绍了OpenMP并行编程的使用,以及向量叉乘的含义。
摘要由CSDN通过智能技术生成

矩阵计算

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
	Matrix2f A, b;
//	LLT<Matrix2f> llt;
	A << 2, -1, -1, 3;
	b << 1, 2, 3, 1;
	cout << "Here is the matrix A:\n" << A << endl;
	cout << "Here is the right hand side b:\n" << b << endl;
	cout << "The solution is:\n" << A.llt().solve(b) << endl;
}

其中A.llt().solve(b) 的结果就是Ax=b表达式中的x的解

Eigen和GLM

Eigen中的norm()函数和GLM中的length()函数的功能是一样的

两个向量叉乘等于0表示这两个向量平行

OpenMP并行编程

#pragma omp parallel forOpenMP中的一个指令,表示接下来的for循环将被多线程执行,另外每次循环之间不能有关系,如下:

int main(int argc, char* argv[])
{
#pragma omp parallel for  //后面是for循环
     for (int i = 0; i < 10; i++ )
     {
         printf("i = %d/n", i);
     }
     return 0;
}

这个程序执行后打印出以下结果:
i = 0
i = 5
i = 1
i = 6
i = 2
i = 7
i = 3
i = 8
i = 4
i = 9

for循环里的内容必须满足可以并行执行,即每次循环互不相干,后一次循环不依赖于前面的循环

向量的归一化

  1. norm()是 Frobenius 范数, 所有元素平方之和的平方根
  2. normalize() 会将向量本身改变进行归一化
  3. normalized() 会返回一个归一化向量,但不会改变向量本身
    代码:
#include <Eigen/Eigen>
#include <iostream>

int main()
{

  Eigen::VectorXd A(3);

  A(0) = 1.;
  A(1) = 2.;
  A(2) = 3.;

  std::cout << "A.norm() = " << std::endl;
  std::cout << A.norm() << std::endl;

  Eigen::VectorXd B = A.normalized();

  std::cout << "B = " << std::endl;
  std::cout << B << std::endl;
  std::cout << "A = " << std::endl;
  std::cout << A << std::endl;

  A.normalize();

  std::cout << "A = " << std::endl;
  std::cout << A << std::endl;

}

编译结果:

A.norm() =
3.74166

B =
0.267261
0.534522
0.801784

A =
1
2
3

A =
0.267261
0.534522
0.801784

Eigen中的类型转换


	Matrix2i a;
	Matrix2d b;

	aaa << 1.1, 2.3,
		   4.6, 4;
	a = b.cast<int>();

当两个矩阵的类型不同时,不能进行矩阵的运算,会报错,此时可以使用矩阵.cast<要转换的类型>();来对矩阵进行转换,使得两个矩阵的类型相同。

Qt 是一个强大的跨平台应用程序开发框架,而 Eigen 是一个高性能的线性代数库。在 Qt 开发中,你可以使用 Eigen 来增强图形处理、数学运算和数据分析等功能,特别是在处理矩阵和向量计算时。 将 Eigen 集成到 Qt 应用中,通常涉及以下几个步骤: 1. **安装 Eigen**:首先确保你的系统已经安装了 Eigen,可以通过包管理器或直接从 Eigen 官网下载源代码编译。 2. **包含头文件**:在你的 Qt 项目中,添加 Eigen 的头文件 `<Eigen/Dense>` 或 `<Eigen/Sparse>`,取决于你需要的线性代数类型。 3. **使用 Eigen 类型**:创建 Eigen 的矩阵(`MatrixXd`、`VectorXd`)或向量(`Vector3d`)实例,它们提供了丰富的数学操作方法,如矩阵乘法、转置、求逆等。 4. **连接信号槽**:如果你需要在 Qt 控件的事件响应中使用 Eigen,可能需要将 Eigen 的计算结果与 Qt 对象绑定起来。 5. **模板和智能指针**:Eigen 提供了模板类,可以方便地与 Qt 的智能指针(如 `QSharedPointer` 或 `std::unique_ptr`)一起使用,以避免内存泄漏。 6. **性能优化**:尽管 Eigen 已经是高效库,但在大规模计算时,仍需考虑内存管理和并行计算,Qt 的多线程支持可以在此时发挥作用。 相关问题: 1. Eigen 在 Qt 中主要用于哪些数学计算? 2. 如何在 Qt 的信号槽连接中使用 Eigen 的结果? 3. Eigen 的模板类如何与 Qt 智能指针配合使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值