💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于最小二乘支持向量机(Least Squares Support Vector Machines, LSSVM)的风电功率预测,是一种基于机器学习的方法,特别适用于处理单变量输入下的多步预测问题。与传统支持向量机(SVM)相比,LSSVM通过最小二乘原则替代了原来的间隔最大化目标,降低了求解复杂度,更适合于回归问题,如风电功率预测。以下是基于LSSVM进行风电功率预测的研究概述:
研究背景
风电功率受多种因素影响,包括但不限于风速、风向、气温、湿度等,表现出明显的随机性和季节性变化。准确预测风电功率对于电力系统的稳定运行、能源调度和经济运行至关重要。LSSVM作为一种非线性回归工具,能够处理高度非线性的风电功率预测问题,特别是在单变量(如历史风电功率序列)输入的场景下。
LSSVM简介
LSSVM通过最小化误差平方和和范数惩罚项的加权和来建立模型,这使得它在处理回归问题时更加高效。LSSVM能够自动确定模型复杂度,减少过拟合的风险,并且通过核技巧可以映射到高维特征空间,有效处理非线性关系。
研究方法
-
数据预处理:首先对收集的风电功率数据进行预处理,包括数据清洗、缺失值处理、异常值检测以及标准化或归一化,确保数据质量。
-
特征构造:尽管是单变量输入,仍可通过对历史功率数据构造时序特征(如滞后特征、滑动平均等)来丰富模型输入。
-
模型构建:选择合适的核函数(如径向基核、多项式核等),确定正则化参数和核函数参数,构建LSSVM回归模型。
-
多步预测:对于多步预测,可以采取“滚动预测”策略,即用模型对每个未来时间点逐一进行预测,每一步的预测结果作为下一次预测的输入之一。
-
模型训练与验证:将数据集划分为训练集和测试集,使用训练集训练LSSVM模型,并通过交叉验证调整超参数,避免过拟合。
-
性能评估:在测试集上评估模型的预测性能,主要评价指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等。
研究挑战与展望
- 特征选择与优化:如何从单变量数据中提取最具预测价值的特征,以及如何优化特征组合,是提升预测精度的关键。
- 模型参数调优:LSSVM模型的性能对核函数的选择和参数设置非常敏感,如何自动化、高效地进行参数优化是一个挑战。
- 外部因素融合:虽然研究集中于单变量输入,但探索如何有效结合气象数据等外部因素以提高预测精度是一个值得探索的方向。
- 模型解释性:提升LSSVM模型的解释性,使得预测结果背后的逻辑更加清晰,对于实际应用和决策支持具有重要意义。
综上所述,基于LSSVM的风电功率预测研究通过非线性回归技术,为风电预测提供了一种有效的方法,有助于提高风电资源的利用率和电力系统的整体效能。然而,如何在保持模型简单性和预测精度之间找到最佳平衡点,以及如何高效处理大规模数据集,仍是未来研究的重点。
📚2 运行结果
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
lstmLayer(25,'Outputmode','last','name','hidden1')
dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(outdim,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取