【两阶段鲁棒微网】【不确定性】基于关键场景辨别算法的两阶段鲁棒微网优化调度(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文档


💥1 概述

本代码针对微电网的两阶段鲁棒优化调度问题提出了一种别出心裁的方法,与众不同地,它没有沿用大多数情况下应用的CC&G算法,而是采取了一项创新技术——关键场景辨别法。这一技术能够经过数轮迭代精准地锁定最不利的情境。面对光伏发电的不确定性和间断性问题,本代码利用了动态鲁棒优化技术进行有效处理。我们构建了一个考虑电价波动和光伏发电量不确定性的微网两阶段鲁棒优化调度模型,并运用恶劣场景辨别技术将挑战分解为主问题和子问题,采取迭代策略进行求解。子问题的职责是精确定位极其不利的光伏发电场景,而主问题则针对这种特定场景进行单层优化模型求解,这大幅减少了需要考虑的情景总数,有效提高了模型的计算效率。这一研究不仅展现了创新思维的重要性,也为微网优化调度领域带来了新的解决方案。

参考文献:

📚2 运行结果

部分代码:

%导入50个光伏场景数据
Spv=xlsread('光伏数据','测试50场景4迭代','A1:AX24');
disp('读取50组光伏出力场景,结束!');

figure
plot(Spv)
grid
xlabel('时间/t');
ylabel('光伏出力/元');
title('总光伏场景')

%% 定义关键场景集合
j=[1];
P_MP=1;%定义初始值
P_SP=0;%定义初始值
k=0;%定义迭代次数

%设置程序大循环
while(P_MP>P_SP)
    display(['迭代还未收敛,当前迭代第 ', num2str(k+1),' 次']);
    P_RES=Spv(:,j)';
    kk=length(j);
    
    Obj_MP=zeros(kk,24);
    P_MP=zeros(1,1);
    P_DA=zeros(kk,24);
    S_DA=zeros(kk,24);
    u_GT=zeros(kk,24);
    u_GTon=zeros(kk,24);
    u_GToff=zeros(kk,24);
   [Obj_MP,P_MP,P_DA,S_DA,u_GT,u_GTon,u_GToff]=Fun_MP(j,P_RES);
   display(['第 ', num2str(k+1),' 次','求解主问题,结束!']);
   P_MP=value(P_MP);
   P_DA_SP=value(P_DA);
   S_DA_SP=value(S_DA);
   u_GT_SP=value(u_GT);
   u_GTon_SP =value(u_GTon);
   u_GToff_SP =value(u_GToff);
   
   P_SP_b=[];%定义临时矩阵

%%%%%%%%%%求解子问题各光伏场景的P_SP%%%%%%%%%
%筛选出主问题中的光伏场景
j_SP=[];
for i=1:50 %这里根据场景数修改,1000场景则改为1000
    if ismember(i,j)~=1 
    j_SP=[j_SP,i];
    end
end
%定义子问题光伏索引
P_RES_SP=Spv(:,j_SP)';   
[Obj_SP,Obj_SP_scene]=Fun_SP(j_SP,P_RES_SP,P_DA_SP,S_DA_SP,u_GT_SP,u_GTon_SP,u_GToff_SP);   
display(['第 ', num2str(k+1),' 次','求解子问题,结束!']);
Obj_SP=value(Obj_SP) ;
Obj_SP_scene=value(Obj_SP_scene);
P_SP_b=Obj_SP_scene(1,:); 

P_SP=min(P_SP_b);%求出P_SP_b矩阵中的最大值P_SP

%找出最大值P_SP对应的光伏场景
j_b=find(P_SP_b==P_SP);
j1=sort(j);%对主问题中的光伏场景排序
for ii=1:length(j1)
    j1(ii)=j1(ii)-ii;
end
m=0;
for ii=1:length(j1)
    if j_b>j1(ii)
        m=m+1;
    end
end
j=[j,j_b+m];%添加最大值P_SP对应的光伏场景
k=k+1; 
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文档

内容概要:本文详细探讨了制造业工厂中条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee格的布局方式,强调了电场和磁场分量在格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值