👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
相较于传统电网,综合能源系统融入了发电、储能、耦合等各类子系统,系统之间的联接、交互、协调更为复杂,所以对系统的统筹规划需要考虑的因素更多。要是以最大电负荷为目标,设备的过剩容量将与实际运行和调度不匹配,不同能源之间的优势无法互补,运行投资成本较大,相比之下就会降低了系统的效率。
与一般能源系统相比,综合能源系统能源种类更多,能量流动更加复杂,除了电气热独立运行设备外,还存在电气热耦合设备,其规划也更加复杂,不仅涉及到设备容量的规划,还涉及到设备安装节点的规划,即定容与选址。与单一能源系统相比,综合能源系统规划不仅包括电储能容量规划,而且还包括热储能和冷储能设备的规划。合理的储能规划计划可以消除可再生能源的随机性波动带来的影响,达到削峰填谷的效果,实现综合能源系统的高效可靠的经济运行以及实现在大规模可再生能源并网渗透率下,综合能源系统的仍然能够安全稳定运行。
现有研究中,有大量学者对综合能源系统的规划做出了相应的研究,在对综合能源系统进行优化研究时,根据不同的指标、不同的负荷需求调整不同的策略。文献[22]优化配置风-柴-储型独立微电网中的各层级分布式电源,保证供电可靠性。文献[21]分两阶段进行优化配置,实现最优经济成本和最低二氧化碳排放。文献[22]根据蓄电池、抽水蓄能电站的运行特性提出以储能装置运行成本最小化为目标的动态优化策略,对储能装置容量进行最优求解。文献[23]针对综合能源系统中各类设备容量的规划与运行,采用两阶段优化方法予以解决。先是多目标优化,实现最小的经济成本和环境成本;再是通过优化获取最佳运行策略。
Benders分解法是一种解决大型混合整数线性规划问题的理论,采用割平面法描述了参变量函数极值以及参变量函数可行解的集合,通过不断迭代主问题和子问题逼近最优解[47][49]。1980年,学者A. M.Geoffrion和 G.W. Graves又在此基础上提出了广义Benders分解法,将其推广应用到了非线性领域,求解范围、规模和应用场景也进一步扩大124][48][50]。
求解步骤:
在本章计算模型中,求解流程如图4-1所示,首先将相关设备的容量和额定运行功率进行初始化,将决策变量带入可行性子问题中实施校验,获取松弛变量,并根据松弛变量值和分析初始决策变量是否满足所有的运行约束条件,若松弛变量之和不能实现为0,则返回主问题不可行割,主问题调整决策变量,重新带入可行性子问题;若经过检验能够满足约束条件,则将决策变量带入优化运行子问题,判断是否收敛,不能返回给主问题可行割,迭代循环计算直至寻找到最优解。
文章讲解见第4部分。
基于广义Benders分解法的综合能源系统优化规划研究
一、广义Benders分解法(GBD)的基本原理
广义Benders分解法(Generalized Benders Decomposition, GBD)是一种用于解决复杂数学规划问题的迭代算法,特别适用于包含混合整数变量或非凸结构的优化问题。其核心思想是将原问题分解为主问题和子问题,通过切割平面方法逐步逼近全局最优解。
- 适用条件
- 问题需满足以下条件:
- 变量可划分为复杂变量(如整数变量)和连续变量。
- 固定复杂变量后,剩余子问题需为凸优化问题。
- 子问题的对偶问题需存在可行解。
- 典型问题形式:混合整数非线性规划(MINLP),例如综合能源系统中的设备投资与运行耦合优化。
-
算法步骤
- 主问题:处理复杂变量(如设备投资决策),生成目标函数的下界和可行性约束。
- 子问题:固定复杂变量后,优化连续变量(如运行功率),生成Benders切割(最优性或可行性约束)反馈至主问题。
- 迭代收敛:主问题与子问题交替求解,直至上下界差距满足预设阈值。
-
优势
- 降低计算复杂度:通过分解将高维问题转换为多个低维子问题,避免直接求解大规模非凸模型。
- 灵活性:可处理随机性(如风光出力波动)和多阶段决策问题。
二、综合能源系统优化规划的主要研究方向
综合能源系统(Integrated Energy Systems, IES)优化规划需协调电、热、气、冷等多能流,核心研究方向包括:
-
多能耦合建模
- 统一建模方法:如能源集线器(Energy Hub)、统一能路理论(Unified Energy Path),用于描述多能流耦合特性。
- 图论与矩阵建模:将设备与能流抽象为节点-分支结构,构建动态平衡方程。
-
不确定性处理
- 鲁棒优化:考虑风光出力、负荷预测误差等不确定性,采用两阶段鲁棒模型或信息间隙决策理论(IGDT)。
- 随机规划:通过场景生成与削减技术模拟概率分布。
-
多目标优化
- 目标包括经济性(总成本最小化)、低碳性(碳排放约束)、可再生能源消纳率等。
- 常用方法:多目标粒子群算法、帕累托前沿分析。
-
动态特性与多时间尺度
- 需考虑热能传输延迟、储能充放动态等,构建多时间尺度调度模型。
三、GBD在综合能源系统优化中的应用现状
-
典型应用场景
- 设备容量规划:优化储能、风机、光伏等设备的投资容量与布局,最小化初始投资与运行成本。
- 机组组合与调度:确定发电机启停状态与出力,满足安全约束。
- 电-气-热协同优化:通过耦合模型协调多能流,提升系统效率。
-
实际案例
- 案例1:某区域综合能源系统采用GBD优化规划,上层决策储能容量,下层优化运行策略,总成本降低12%。
- 案例2:基于Matlab的GBD程序实现,解决含风光不确定性的IES规划问题,收敛时间较传统方法缩短30%。
-
与其他算法的对比
- 启发式算法(如遗传算法):计算速度快但难以保证最优性。
- 数学规划方法(如混合整数线性规划):精度高但求解大规模问题时效率低。
- GBD优势:在保证精度的前提下,通过分解显著提升计算效率。
四、基于GBD的综合能源系统优化算法框架实现
-
模型构建步骤
- 步骤1:定义双层优化结构。上层为投资决策(主问题),下层为运行优化(子问题)。
- 步骤2:主问题建模。目标为最小化投资成本,约束包括设备容量限制、Benders切割反馈。
- 步骤3:子问题建模。固定投资变量后,优化运行成本,考虑风光出力随机性、负荷波动等。
- 步骤4:迭代求解。主问题生成候选解,子问题验证可行性并生成切割,直至收敛。
-
Matlab程序实现示例
% 初始化参数 flag_converse = false; max_iter = 100; tolerance = 1e-4; while \~flag_converse && iter < max_iter % 求解主问题(投资决策) [investment_cost, x] = solve_master_problem(); % 求解子问题(运行优化) [operational_cost, cuts] = solve_subproblem(x); % 生成Benders切割并更新主问题 add_cuts_to_master(cuts); % 计算上下界差距 lower_bound = investment_cost; upper_bound = investment_cost + operational_cost; gap = upper_bound - lower_bound; % 收敛判断 if gap < tolerance flag_converse = true; end iter = iter + 1; end
代码逻辑说明:通过主问题生成投资方案,子问题计算运行成本并反馈切割,迭代直至收敛。
-
关键改进方向
- 并行计算:多场景子问题并行求解以加速迭代。
- 切割筛选:保留有效切割,减少主问题规模。
- 自适应收敛阈值:动态调整收敛条件以平衡精度与效率。
五、挑战与未来研究方向
-
挑战
- 非凸性问题:GBD要求子问题为凸,需结合凸松弛或分段线性化处理实际IES中的非凸约束。
- 高维数据:多能流耦合模型变量维度高,需开发高效稀疏矩阵存储技术。
-
未来方向
- 智能算法融合:结合深度学习预测风光出力,提升GBD的实时性。
- 跨区域协同:扩展至多区域IES联合优化,考虑能量传输网络约束。
- 政策驱动建模:整合碳交易、需求响应机制,构建低碳IES规划模型。
六、结论
广义Benders分解法通过分解-协调机制,为综合能源系统优化规划提供了高效、灵活的解决方案。其在设备容量规划、多能流协同调度等场景中展现出显著优势,尤其是在处理大规模、多阶段、不确定性问题上表现突出。未来研究需进一步结合智能算法与政策机制,推动IES向低碳化、智能化方向发展。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]刘永亮. 综合能源系统协同运行策略与规划研究[D].山东大学,2021.DOI:10.27272/d.cnki.gshdu.2021.000876.
[2]杨艳红,裴玮,屈慧,肖浩,齐智平.基于广义Benders分解的分布式热电联供机组规划方法[J].电力系统自动化,2014,38(12):27-33.