计及风光不确定性的基于IGDT的综合能源系统优化调度研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

计及风光不确定性的基于IGDT的综合能源系统优化调度研究

1. IGDT理论基础及其在能源系统中的应用

2. 综合能源系统优化调度的核心框架

3. 风光不确定性的建模与IGDT的结合

4. 基于IGDT的优化调度模型设计要点

5. 现有研究案例分析

6. 多目标优化算法设计

7. 挑战与未来方向

结论

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章下载


💥1 概述

文献来源:

本文代码还包含光热电站模型,有需要学习光热电站的也可以考虑此代码,注释详细,模块清晰。重要的是,本代码还考虑了综合能源风光出力的不确定性,构建了基于信息间隙决策理论的综合能源系统优化调度模型,分析了IGDT鲁棒模型以及机会模型,且不确定参数可以自行调节,从而进行灵敏度分析!
详细文章讲解见第4部分。

计及风光不确定性的基于IGDT的综合能源系统优化调度研究

1. IGDT理论基础及其在能源系统中的应用

IGDT(信息间隙决策理论)是一种非概率、非模糊的不确定性管理方法,其核心在于通过信息间隙参数(ε)量化决策者对风险的容忍度,并构建鲁棒性(风险规避)和机会性(风险追求)两种策略。

  • 鲁棒性模型:旨在最大化系统对不确定参数的容忍范围,确保在最坏情况下仍能满足预设目标(如成本控制、能源可靠性)。例如,在风光出力低于预期时,通过储能和备用机组维持供需平衡。
  • 机会性模型:利用不确定性中的有利波动,追求更高收益或更低成本。例如,当风光出力高于预测时,通过电转气(P2G)或储能消纳多余电能以降低购电成本。
    与其他方法(如随机规划、模糊优化)相比,IGDT无需依赖概率分布或隶属函数,特别适用于数据稀缺的场景。
2. 综合能源系统优化调度的核心框架

综合能源系统(IES)优化调度需统筹电、热、气、冷等多能流耦合,其基本框架包括:

  • 多时间尺度协同:分日前、日内滚动、实时三个阶段,结合不同时间粒度的预测数据(如1小时、15分钟)进行动态调整,以应对风光出力的短时波动。
  • 目标函数设计:以经济性(最小化运行成本)、环保性(最小化碳排放)和可靠性(最大化可再生能源消纳)为核心目标,常见形式为多目标优化模型。
  • 关键约束条件:包括功率平衡(电/热/冷)、设备运行限值(如燃气轮机爬坡率)、储能充放电效率及联络线交互功率限制。
3. 风光不确定性的建模与IGDT的结合

风光出力不确定性主要由风速和辐照度的随机性引起,传统建模方法包括:

  • 概率分布法:假设风速服从Weibull分布、光伏出力服从Beta分布,通过蒙特卡洛抽样生成多场景。
  • 场景削减技术:采用拉丁超立方采样(LHS)或Cholesky分解生成典型场景集,再通过聚类算法(如谱聚类)缩减计算规模。
    IGDT的优势在于无需精确概率模型,直接通过间隙参数ε描述不确定性的波动范围。例如:
  • 风险规避策略:设定ε为风光出力预测值的最大下偏范围,确保调度方案在此范围内可行。
  • 风险追求策略:设定ε为出力上偏范围,捕捉风光超预期发电带来的经济收益。
4. 基于IGDT的优化调度模型设计要点
  1. 系统模型与不确定性参数定义
    • 输入变量:风光出力预测值、负荷需求、能源价格等。
    • 不确定变量:风光实际出力偏差(ΔP_wind、ΔP_pv),用间隙参数ε描述其波动区间。
  2. 目标函数构建
  3. 约束条件处理
    • 引入鲁棒性约束,确保风光出力在±ε范围内波动时系统仍满足供需平衡。
    • 对耦合设备(如CHP机组、P2G装置)的动态特性进行一阶惯性环节建模,避免因响应延迟导致功率失衡。
5. 现有研究案例分析
  • 虚拟电厂调度:将光热电站与储能结合,通过IGDT鲁棒模型应对太阳辐射预测误差,结果显示系统弃风率降低12.3%。
  • 碳捕集电厂优化:采用IGDT处理负荷需求不确定性,风险规避策略下碳捕集效率提升50%,而风险追求策略下市场收益增加15%。
  • 多能源市场协同:在电-气联合市场中,IGDT用于优化阶梯碳交易机制下的购电策略,使碳排放强度下降20%。
6. 多目标优化算法设计

基于IGDT的多目标优化需兼顾收敛性、多样性和均匀性:

  • 自适应进化算法:如改进粒子群算法(MOPSO),通过反向生成距离(IGD)指标评估解集与真实Pareto前沿的逼近程度。
  • 机会约束转化:将不确定性约束转化为确定性形式,例如通过高斯混合模型量化置信区间,降低保守性。
7. 挑战与未来方向
  • 动态间隙参数调整:现有研究多采用固定ε值,未来可结合实时预测误差动态优化ε。
  • 多类型不确定性耦合:风光出力与负荷、价格不确定性的交互影响需进一步建模。
  • 硬件协同优化:如光热电站的储热系统约束在现有模型中简化较多,需精细化建模以提升实用性。
结论

基于IGDT的综合能源系统优化调度通过鲁棒性与机会性策略的平衡,有效应对了风光不确定性带来的经济与安全挑战。结合多时间尺度协同和动态算法设计,该方法在提升可再生能源消纳、降低碳排放方面展现出显著优势,为未来高比例新能源系统的调度提供了理论和技术支撑。

📚2 运行结果

 这里仅展现部分结果图。

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]于雪菲,张帅,刘琳琳等.基于信息间隙决策理论的碳捕集电厂调度[J].清华大学学报(自然科学版),2022,62(09):1467-1473.DOI:10.16511/j.cnki.qhdxxb.2022.26.008.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值