【风电预测】考虑预测误差不确定性的风电预测研究(matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

考虑预测误差不确定性的风电预测研究综述

一、风电预测的基本概念与方法

二、预测误差不确定性的定义与影响

1. 预测误差来源

2. 误差分布特征

3. 对电力系统的影响

三、处理预测误差不确定性的方法

1. 概率预测与置信区间

2. 误差校正与分解

3. 异方差性建模

4. 多模型融合

四、典型案例与改进效果

五、挑战与未来方向

1. 当前挑战

2. 前沿方向

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

目前研究中大多采用风功率的预测信息进行电力系统的优化决策。而预测误差的存在给电网的运行决策带来重大影响,造成现有调度有时向风电场发出的有功指令不得不低于风功率预测的数据,出现弃风现象[2]。预测误差信息对于不确定性的建模及辅助决策有重要的意义,包括电力市场中的风电交易,储能容量的配置、备用配置、计算概率潮流、最优机组组合及经济调度13]。文献[4]表明风功率预测误差随着预测尺度的增加而增大,并具体分析了误差对系统调度计划安排带来的影响。通过对预测误差特性的刻画与利用,采取一定措施应对误差以减少其影响为电力系统精确决策提供了思路。

对于误差的不确定性的刻画,通常情况下采用正态分布的方法,但正态分布往往不能表达数据的厚尾效应。文献[5]采用带位置参数和尺度参数的t分布表文达误差的频率分布,通过一定的指标计算,证明该方法取得了良好的拟合效果。文献[6]用随机响应面法取得分布式光伏、风电、实时电价等不确定量的预测误差的分布特性,在得到误差的概率分布曲线后将其离散化生成所需的场景。

本文对多个风电场预测误差的时空相关性进行建模,通过多元t分布参数刻画不同预测功率等级下的误差分布,验证预测误差对风电预测的跟踪效果。

特别地,由于Copula可以建立两维到多维数据间的相关性关系,并且具有可以对相关性结构与边缘分布分别进行建模的优势,被广泛应用于风功率预测[23备用配置7、运行调度[9、储能优化[14l等方面。运用Copula方法,可以建立同时考虑空间相关性与时间相关性的模型。文献[15]运用Copula函数构建了二维风速的空间相关性模型。文献[16]给出了基于Copula函数的两风电场联合出力分布模型的构建,运用基于嫡权属性识别理论的优选方法选取合适的函数进行建模并生成场景空间。由于多风电场在空间位置上沿风向呈带状分布,在同一风带的作用下,其风速和功率具有明显的时间延迟现象。因此,文献[17]分析了多风电场风速间的时延关系,运用Copula函数生成具有相关性的风速序列,加入时延关系后对生成的序列进行重构。能够较准确得描述二元相关性,正态copula和 t-copula是最常用的可描述高维相关性的Copula函数。随着对建模精度要求的提高,越来越多的可描述高维不确定性的 Coptula函数方法被提出。文献[18]采用pair copula来描述风电功率两两之间不同的相关性结构,通过仿真对比得出不考虑相关性时会低估线路有功及节点电压存在的越限风险。风功率预测误差不仅存在时空相关性,而且误差的大小与风功率预测值也具有一定的相关关系[19-20]。当风电穿透率不断增加时,这种相关关系带来的不确定性也变得不可忽略,否则将会因对不确定性的刻画不够精确而导致更多的弃风、失负荷的风险。文献[21]和文献[22]将)所有范围内的预测功率进行分段,并对不同分段进行误差拟合。分段数目越多所建立的模型对误差的刻画越精确,但是分段数目受到原始数据数量的限制,不能无限增加。文献[20]在考虑空间相关性的

考虑预测误差不确定性的风电预测研究综述

一、风电预测的基本概念与方法

风电预测根据时间尺度可分为超短期(0-4小时)、短期(1-3天)、中期(数周至数月)和长期(整年至数年)预测。主要方法包括物理法和统计学习法:

  1. 物理预测法:基于数值天气预报(NWP),通过模拟大气运动获取轮毂高度风速,结合功率曲线输出预测值。丹麦Risø实验室开发的Prediktor系统是典型代表,其技术流程包括NWP数据输入、地形修正和风速-功率转换。
  2. 统计学习法:利用历史数据构建时序或机器学习模型。例如,卡尔曼滤波与时间序列分析的混合算法可解决非平稳风速建模问题,而持续法(Persistence Method)在超短期内因简单高效被广泛应用。

近年来,深度学习(如LSTM、TCN)与分解技术(如VMD)的结合显著提升了预测精度。但无论何种方法,预测误差的不确定性始终是核心挑战。


二、预测误差不确定性的定义与影响
1. 预测误差来源
  • 模型误差:NWP数据精度不足、功率曲线拟合偏差。
  • 数据不确定性:传感器噪声、数据缺失。
  • 环境动态性:风速突变、设备老化、叶片污染。
  • 系统复杂性:多风电场时空相关性未被充分建模。
2. 误差分布特征

风电预测误差常呈现“尖峰厚尾”特性,传统正态分布难以拟合。例如,某风电场误差频率直方图显示明显偏态和多重峰值。研究表明,采用偏斜t分布(Skew-t)、广义误差分布(GED)或高斯混合模型(GMM)可更准确描述误差分布。

3. 对电力系统的影响
  • 经济成本:预测误差每增加1%,美国德州市场年整合成本可能增加55万美元。
  • 备用容量需求:风电容量达920MW时,备用需求超过常规机组的9%。
  • 市场风险:误差导致价格波动,天然气机组需频繁启停以平衡电网,增加边际成本。

三、处理预测误差不确定性的方法
1. 概率预测与置信区间
  • 非参数核密度估计:无需假设分布形式,直接拟合误差密度曲线,在95%置信度下覆盖率可达89%。
  • 分位数回归:结合三次样条插值(CSI)优化,降低预测区间平均宽度至12.3%,优于传统分位数模型。
  • 高斯过程回归:在线学习版本通过Woodbury恒等式降低计算复杂度,实现实时参数更新。
2. 误差校正与分解
  • 后处理校正:如LightGBM对BiLSTM初步预测的残差建模,使均方根误差(RMSE)降低30%。
  • 误差解耦分析:将误差分解为NWP误差、转换模型误差和校正误差,识别关键影响因素。
3. 异方差性建模
  • ARIMA-GARCH:捕捉误差波动率的时变特征,动态Copula模型可量化风速-误差相关性。
  • 变分模态分解(VDM) :分解原始序列后,TCN模型在4小时预测中RMSE低至1.499%。
4. 多模型融合
  • 熵权法组合预测:将指数平滑正态分布与滑动核密度估计结合,区间覆盖概率提升至93.5%。
  • ResNet-GRU-CNN-LSTM:通过风速校正和多层注意力机制,预测误差减少40%。

四、典型案例与改进效果
  1. 广义误差分布改进:清华大学团队基于风电场功率曲线划分误差区间,拟合效果MAE降低至0.028,优于传统正态模型。
  2. 误差叠加修正:BP神经网络叠加误差预测模块,使某风电场预测准确率提高15%。
  3. 在线高斯过程回归:在参数时变场景下,自适应模型较离线模型NRMSE降低6.2%。

五、挑战与未来方向
1. 当前挑战
  • 数据质量:噪声与缺失导致模型泛化性下降,需发展鲁棒插值算法。
  • 计算效率:深度模型训练耗时,VDM-TCN等结构需进一步轻量化。
  • 多尺度耦合:短期与中长期预测的误差传播机制尚未明确。
2. 前沿方向
  • 物理-数据混合模型:融合NWP与深度学习,如CNN-LSTM-Attention框架。
  • 不确定性传播分析:量化气象-风速-功率的全链条误差传递。
  • 在线学习与边缘计算:基于分块缓存机制实现模型实时更新。
  • 多能源协同预测:考虑风光互补特性,构建联合概率分布模型。

六、结论

风电预测误差的不确定性管理是保障高渗透率电网稳定的关键。现有方法通过概率建模、误差校正和多模型融合已取得显著进展,但数据质量、计算效率和跨尺度耦合仍是瓶颈。未来需结合在线学习、混合建模和不确定性传播分析,推动预测技术从“点估计”向“风险可控的区间决策”演进,为“双碳”目标下的新型电力系统提供支撑。

📚2 运行结果

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李熙娟. 考虑预测误差不确定性的含风电机组组合研究[D].山东大学,2019.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值