💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于簇头的高效自主学习方式在VANET路由中的研究
在最近的几天里,由于城市地区车辆数量的增加,VANET中的聚类变得很重要。在未来的智能交通系统(ITS)中,VANET能够提供与安全相关的应用程序、互联网访问以及为驾驶员和乘客提供各种用户应用程序。基于聚类的拓扑结构可以在地理上相邻的车辆节点组中实现高效的数据交互,从而支持集群头(CHs)之间的直接交互。在现有方法中,已经开发了许多与基于聚类的VANET通信相关的算法,但由于车辆的高度移动性以及它们的位置、速度和加速度等参数的改变,增加了复杂性并降低了性能。在本文中,我们提出了一种自适应的自学习方法,基于混合聚类。在混合聚类中,该过程分为三个步骤。第一步是Type1,它用于道路边缘单元(RSU)作为静态集群头。第二步是将整个区域划分为多个区域,并应用基于区域敏感的聚类算法。它用于预测每个车辆的有效质心/权重值。最后,在第三步中,基于上述算法,我们得到了神经模糊训练样本。应用基于神经模糊预测的集群头选择。每个区域的集群头的百分比用于减少端到端延迟和减少拥塞。模拟结果表明,与现有方法相比,所提出的算法具有更高的效率。
如今,VANET对于安全和重要信息的传输都非常重要。无论是道路交通还是紧急情况,它都可能起到重要作用。近年来,针对VANET的性能改进进行了许多调查。由于自发性网络架构和基于移动性的通信,数据传输变得重要且复杂。与WSN模型不同,VANET具有这些参数。我们需要改善网络集群和路由的性能。VANET使车辆能够互相连接,还可以与路边站点进行连接,以支持多种应用,例如紧急警告、事故预防、道路状况、换道支持、紧急电子刹车灯指示、网页浏览、内容分发、地图更新、视频下载、游戏、娱乐等。VANET可以提供安全性,并通过向车辆驾驶员或车辆提供信息来减轻道路交通的副作用。
在聚类中,将VANET分成小组,限制通道争用,并有效控制网络拓扑。车辆自组织网络(VANET)旨在在车辆之间传播安全信息,以提高道路安全性和防止事故。VANET是移动自组织网络(MANET)的一种特殊形式,其中车辆配备了无线通信设备(车载单元(OBU)),以提供自组织连接。不同类型的通信包括车辆到传感器、车辆到车辆、车辆到互联网和车辆到道路基础设施。通信是VANET中的一个重要研究主题。VANET技术的主要目的是通过车辆之间的V2V和V2I来支持安全和非安全相关的应用。由于其动态性,VANET面临许多挑战。为了应对VANET的动态结构,需要一种高效且有效的路由方案来进行数据传播。在没有高效路由方案的情况下,车辆可能无法交换信息,并丧失先进VANET技术所提供的所有优势。文献中描述了许多提出的路由方案来应对VANET的动态结构。VANET在广播协议上具有高通信开销,会传播大量消息。传统的单跳聚类算法在VANET的拓扑动态变化影响下表现不佳。详细文章见第4部分。
一、VANET与簇头方法的基本概念
VANET(车辆自组织网络)是一种以车辆为节点的动态无线网络,旨在支持车辆间(V2V)及车辆与基础设施(V2I)的通信,应用场景包括交通安全、交通管理和信息服务等。其核心挑战在于网络拓扑的高动态性、链路寿命短和带宽限制。
簇头方法通过将车辆划分为逻辑簇(Cluster),并选举簇头(Cluster Head, CH)负责簇内通信协调和数据转发,从而减少路由开销并提高网络稳定性。典型流程包括:簇形成、簇头选举、簇维护和跨簇通信。例如,CGS(Cluster-Gateway Selection)协议通过网关节点实现簇间通信,但面临簇头失效导致路由中断的问题。
二、基于簇头的VANET路由协议研究进展
-
传统簇头选择方法
- 静态指标驱动:早期研究多基于位置、速度、缓冲区大小等静态参数。例如,EPIO(精英粒子群优化)算法通过Cauchy分布变异操作优化簇头选择,以动态适应环境变化。
- 模糊逻辑应用:部分研究利用模糊逻辑综合评估多个指标(如网络连通性、平均距离、速度),提升簇头选举的鲁棒性。例如,RSU通过模糊逻辑选择能量效率高的簇头,优先考虑通信链路稳定性。
-
动态优化与链路可靠性
- 链路可靠性模型:在高流量场景下,改进的K-means算法将距离参数替换为链路可靠性模型,结合霍普菲尔德网络动态确定簇头和簇的数量,显著提高吞吐量。
- 双簇头机制:EWCA(增强型权重聚类算法)引入主簇头(PCH)和备用簇头(SeCH),通过权重值动态调整领导权,使簇稳定性提升40%-45%。
-
安全性与信任机制
- 信任度评估:基于加权方法的策略结合适应性因子、信任度等指标,通过LSTM模型预测节点能量状态,降低不稳定簇头的选举概率。
- 区块链辅助:BCCSO-EAC技术利用区块链实现跨簇安全通信,结合混沌优化算法动态调整簇内负载分布,提升能源效率。
三、自主学习机制与簇头路由的融合
-
强化学习(RL)的应用
- 动态路由决策:ARPRL(自适应强化学习路由协议)通过持续监控网络状态调整路由策略,相比传统AODV协议,端到端延迟降低约30%。
- Q-learning优化:MetaLearn方法结合灰色狼优化(GWO)和时间差分学习,平衡全局探索与局部利用,优化QoS参数(如吞吐量、延迟)。
-
深度学习与预测模型
- LSTM预测簇头稳定性:基于历史数据训练LSTM模型,预测车辆移动模式和链路质量,准确率可达80%,误分类率14%。
- 深度强化学习(DRL) :VDR-DRL协议将车辆区域划分为段,利用神经网络选择边缘簇头,并通过Q-learning动态选择网关节点,提升数据传输可靠性。
-
元启发式与混合算法
- 改进K-means与Hopfield网络:通过Hopfield网络动态调整K-means输入参数(如簇数),结合速度、节点度等权重函数优化簇头选择,减少端到端时间。
- 混合优化框架:哈里斯鹰优化(HHO)和人工蜂群(ABC)算法结合缓冲区大小、链路质量等参数,在数据包投递率和延迟方面优于传统方法。
四、关键挑战与未来方向
-
现有问题
- 动态拓扑适应性:簇头频繁切换导致控制消息开销增加(如TD_AODV协议中需定期维护簇结构)。
- 计算复杂度:深度学习和元启发式算法可能引入较高的计算负载,影响实时性。
- 安全与隐私:信任模型易受恶意节点攻击,需结合零知识证明等隐私保护技术。
-
未来研究方向
- 多目标优化:结合多智能体强化学习(MARL),同时优化能耗、延迟和安全性。
- 边缘计算集成:在RSU或边缘节点部署轻量化模型,降低中心化计算压力。
- 异构网络协同:探索VANET与5G/6G、卫星网络的融合,提升覆盖范围和传输效率。
五、典型案例分析
协议/方法 | 核心技术 | 优势 | 局限性 |
---|---|---|---|
EPIO算法 | 粒子群优化+Cauchy分布变异 | 动态适应环境变化,提升簇头稳定性 | 计算复杂度较高 |
VDR-DRL | 深度强化学习+分段簇头选举 | 多簇头冗余提升可靠性 | 忽略车辆移动对簇头选择的影响 |
BCCSO-EAC | 混沌优化+区块链跨簇认证 | 高安全性与负载均衡 | 需额外硬件支持区块链节点 |
MetaLearn | GWO+Q(λ)混合优化 | 平衡全局与局部搜索,优化QoS | 训练数据依赖性高 |
六、结论
基于簇头的VANET路由研究正逐步从静态参数驱动转向动态自主学习驱动。通过融合强化学习、深度学习和元启发式算法,能够有效应对网络拓扑动态性、链路不稳定性和安全威胁。未来需进一步探索轻量化模型设计、多技术协同优化及标准化评估框架,以实现VANET在智能交通系统中的规模化应用。
📚2 运行结果
部分代码:
X = min1+(max11-min1)*rand(1,N);
Y = min1+(max1-min1)*rand(1,N);
R=100; %sensor field Radius
%co-ordinates of base station
Xb = max11+2+rand(1,1);
Yb =(max1+2)+rand(1,1);
%% Normalized vehicle velocity
maxv=50;
minv=10;
vel=rand(1,N);
%% Node Buffersize
E=rand(1,N);%1.*ones(1,N); % intialize node Buffersize
minTh=E/2; %% minTh for buffer
%%
figure,
for i2 = 1:N
plot(X(i2),Y(i2),'o','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',8');
xlabel('X in m')
ylabel('Y in m')
text(X(i2), Y(i2), num2str(i2),'FontSize',10);
hold on;
end
hold on
plot(Xb,Yb,'s','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',12');
xlabel('X in m')
ylabel('Y in m')
text(Xb, Yb, 'Sink','FontSize',10);
hold on;
%% Equal-zone division
zX=0:100:max11;
zY=0:100:max1;
id=zeros(1,N);
%ipd=1;
ik1=1;
for ik=1:numel(zX)-1
for ij=1:numel(zY)-1
rectangle('Position',[zX(ik) zY(ij) 100 100])
points =[zX(ik) zY(ij); zX(ik)+100 zY(ij); zX(ik)+100 zY(ij)+100 ;zX(ik) zY(ij)+100 ;zX(ik) zY(ij)]
line(1:400,100.*ones(1,400),'Color','r','LineWidth',4)
if(~isempty(RSU))
plot(RSU(1),100,'^','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',11');
xlabel('X in m')
ylabel('Y in m')
%text(Xb, Yb, 'Base','FontSize',10);
hold on;
end
%figure(2)
%plot(points(:,1),points(:,2),'-*r')
[in,on]=inpolygon(X,Y,points(:,1),points(:,2))
ind=find(in==1);
if(~isempty(RSU))
if(RSU(1)>zX(ik) && RSU(1)<zX(ik+1))
ind=[];
end
else
%% Max Buffersize CHM
Ec=E(ind);
SN1=ind;
SN(ik1).id=ind;
L=0.*ind;%label
[val1,ind2]=sort(Ec,'descend');
MonitorID(ik1)=ind(ind2(1));
ipd0=find(ind==ind(ind2(1)));
L(ipd0)=1; %CHM
plot(X(MonitorID(ik1)),Y(MonitorID(ik1)),'o','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10');
xlabel('X in m')
ylabel('Y in m')
%text(Xb, Yb, 'Base','FontSize',10);
hold on;
%% Pch%
chmtosinkdist=abs(X(MonitorID(ik1))-Xb);
pc=distpch(chmtosinkdist);
s1=ceil((pc/100)*numel(ind))
SN(ik1).s1=s1;
%% Adaptive Clustering
pos1=[X(ind) Y(ind)];
vel1=vel(ind);
Bs=E(ind);
posd=pdist2([X(ind); Y(ind)]',[zX(ik)+50 zY(ij)+50]);
w1=0.6;
w2=0.2;
w3=0.2;
W=w1.*posd+w2.*vel1'+w3.*Bs';
rng('default') % For reproducibility
[idx3,C,sumdist3] = kmeans([X(ind)+W'; Y(ind)+W']',s1,'Distance','cityblock','Display','final');
idx=unique(idx3);
for ip=1:numel(idx)
ind3= find(idx3==idx(ip));
% select CH
[val,ind2]= min(abs(W(ind3)-C(ip)))
L((ind3(ind2(1))))=ip+1;
% assign cluster member
ind3(ind2(1))=[];
L((ind3))=ip+1+0.1;
end
%L(ipd0)=1; %CHM
%plot
L
disp('hello');
% if(numel(ind)~= numel(L))
% pause,
% break;
% end
SN(ik1).L=L;
SN(ik1).Z=(ik1).*ones(1,numel(L));
X = min1+(max11-min1)*rand(1,N);
Y = min1+(max1-min1)*rand(1,N);
R=100; %sensor field Radius
%co-ordinates of base station
Xb = max11+2+rand(1,1);
Yb =(max1+2)+rand(1,1);
%% Normalized vehicle velocity
maxv=50;
minv=10;
vel=rand(1,N);
%% Node Buffersize
E=rand(1,N);%1.*ones(1,N); % intialize node Buffersize
minTh=E/2; %% minTh for buffer
%%
figure,
for i2 = 1:N
plot(X(i2),Y(i2),'o','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',8');
xlabel('X in m')
ylabel('Y in m')
text(X(i2), Y(i2), num2str(i2),'FontSize',10);
hold on;
end
hold on
plot(Xb,Yb,'s','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','y',...
'MarkerSize',12');
xlabel('X in m')
ylabel('Y in m')
text(Xb, Yb, 'Sink','FontSize',10);
hold on;
%% Equal-zone division
zX=0:100:max11;
zY=0:100:max1;
id=zeros(1,N);
%ipd=1;
ik1=1;
for ik=1:numel(zX)-1
for ij=1:numel(zY)-1
rectangle('Position',[zX(ik) zY(ij) 100 100])
points =[zX(ik) zY(ij); zX(ik)+100 zY(ij); zX(ik)+100 zY(ij)+100 ;zX(ik) zY(ij)+100 ;zX(ik) zY(ij)]
line(1:400,100.*ones(1,400),'Color','r','LineWidth',4)
if(~isempty(RSU))
plot(RSU(1),100,'^','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',11');
xlabel('X in m')
ylabel('Y in m')
%text(Xb, Yb, 'Base','FontSize',10);
hold on;
end
%figure(2)
%plot(points(:,1),points(:,2),'-*r')
[in,on]=inpolygon(X,Y,points(:,1),points(:,2))
ind=find(in==1);
if(~isempty(RSU))
if(RSU(1)>zX(ik) && RSU(1)<zX(ik+1))
ind=[];
end
else
%% Max Buffersize CHM
Ec=E(ind);
SN1=ind;
SN(ik1).id=ind;
L=0.*ind;%label
[val1,ind2]=sort(Ec,'descend');
MonitorID(ik1)=ind(ind2(1));
ipd0=find(ind==ind(ind2(1)));
L(ipd0)=1; %CHM
plot(X(MonitorID(ik1)),Y(MonitorID(ik1)),'o','LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10');
xlabel('X in m')
ylabel('Y in m')
%text(Xb, Yb, 'Base','FontSize',10);
hold on;
%% Pch%
chmtosinkdist=abs(X(MonitorID(ik1))-Xb);
pc=distpch(chmtosinkdist);
s1=ceil((pc/100)*numel(ind))
SN(ik1).s1=s1;
%% Adaptive Clustering
pos1=[X(ind) Y(ind)];
vel1=vel(ind);
Bs=E(ind);
posd=pdist2([X(ind); Y(ind)]',[zX(ik)+50 zY(ij)+50]);
w1=0.6;
w2=0.2;
w3=0.2;
W=w1.*posd+w2.*vel1'+w3.*Bs';
rng('default') % For reproducibility
[idx3,C,sumdist3] = kmeans([X(ind)+W'; Y(ind)+W']',s1,'Distance','cityblock','Display','final');
idx=unique(idx3);
for ip=1:numel(idx)
ind3= find(idx3==idx(ip));
% select CH
[val,ind2]= min(abs(W(ind3)-C(ip)))
L((ind3(ind2(1))))=ip+1;
% assign cluster member
ind3(ind2(1))=[];
L((ind3))=ip+1+0.1;
end
%L(ipd0)=1; %CHM
%plot
L
disp('hello');
% if(numel(ind)~= numel(L))
% pause,
% break;
% end
SN(ik1).L=L;
SN(ik1).Z=(ik1).*ones(1,numel(L));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。