💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于短时傅里叶变换(Short-Time Fourier Transform,STFT)的轴承故障诊断研究是一个重要的研究领域,特别是在利用西储大学(Case Western Reserve University,CWRU)数据集进行分析时。以下是对该研究的详细探讨:
一、短时傅里叶变换(STFT)原理
短时傅里叶变换是一种将信号分解为时域和频域信息的时频分析方法。它通过将信号分成短时段,并在每个短时段上应用傅里叶变换来捕捉信号的瞬时频率。这种方法使得信号在时间和频率上都能得到局部化的分析,从而提高了对非平稳信号的处理能力。
在STFT中,信号首先被分割成短时段,这通常通过使用窗口函数来实现。窗口函数是一个在有限时间内非零,而在其他时间上为零的函数。常见的窗口函数有矩形窗、汉明窗、汉宁窗等。对于每个短时段,都会进行傅里叶变换,将信号从时域转换到频域。这样,每个短时段的傅里叶变换结果都可以排列成一个矩阵,构成时频图。时频图的横轴表示时间,纵轴表示频率,而每个点的强度表示对应频率在对应时刻的幅度。
二、西储大学(CWRU)数据集
西储大学提供的轴承数据集是机械故障诊断领域广泛使用的标准数据集之一。该数据集主要用于旋转机械的轴承故障检测,并通过安装在电机轴承附近的加速度传感器采集得到。数据集记录了正常运行状态以及不同类型的轴承故障状态,包括轴承内圈、外圈和滚动体(球)损坏。每种故障情况还区分了不同的故障尺寸和不同的负载条件。
CWRU数据集的结构包括正常基线数据、12k驱动端轴承故障数据、48k驱动端轴承故障数据和12k风扇端轴承故障数据。其中,正常基线数据记录了轴承在正常工作状态下的振动数据,而故障数据则根据不同的故障直径、故障类型和负载条件进行分类。
三、基于STFT的轴承故障诊断研究
在利用STFT进行轴承故障诊断时,首先需要将采集到的轴承振动信号进行预处理,包括去噪、滤波等步骤。然后,利用STFT将振动信号转换为时频图,以便观察信号在时间和频率上的变化。
接下来,可以通过卷积神经网络(CNN)等深度学习模型对时频图进行特征提取和分类。CNN能够自动学习图像中的特征,并将其用于分类任务。通过训练CNN模型,可以实现对轴承故障的高精度识别。
例如,有研究使用CWRU轴承故障数据集,通过STFT将振动信号转换为二维图像,然后利用CNN进行故障诊断。实验中展示了不同窗口大小的STFT结果,并利用VGG模型实现了高精度的故障识别,训练结果显示97.5%的准确率。
四、结论与展望
基于短时傅里叶变换的轴承故障诊断研究在机械故障诊断领域具有重要的应用价值。通过利用CWRU数据集进行分析,可以实现对轴承故障的高精度识别。未来,随着深度学习技术的不断发展,可以进一步探索更加高效的特征提取和分类方法,以提高轴承故障诊断的准确性和可靠性。同时,也可以将该方法应用于其他机械设备的故障诊断中,为工业生产的智能化和自动化提供更加有力的支持。
📚2 运行结果
生成时频图像数据集:
短时傅里叶对比:
比较 STFT 不同故障:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.
[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.
[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.
[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).
[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.
🌈4 Python代码、数据、文档说明书下载
jupyter、pycharm两种版本都有
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取