【EI复现】【基于改进粒子群算法求解】一种建筑集成光储系统规划运行综合优化方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、双层耦合模型构建

1. 模型架构

2. 数学表达

3. 关键约束条件

二、改进粒子群算法(PSO)创新点

1. 算法改进措施

2. 性能优势

三、实验参数与数据来源

1. 数据获取

2. 关键参数设置

四、标准PSO在能源领域的应用基础

五、方法效果验证

六、Matlab实现框架

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文档下载


💥1 概述

文献来源:

一、双层耦合模型构建

1. 模型架构

采用外层容量配置-内层能量调度的双层耦合结构(图1):

  • 外层模型:以光伏板面积APVAPV​和储能额定容量EbEb​为决策变量,以投资回收期最短为目标函数,遍历容量备选集(光伏:20~160m²,步长5m²;储能:0.5~20kWh,步长0.5kWh)。

  • 内层模型:在给定容量配置下,以储能电池25小时荷电状态(SOC)为优化参数,以日运行收益最大为目标,通过改进PSO算法求解能量调度策略。
2. 数学表达
  • 外层目标函数

    其中CPV​为光伏系统成本,ISUB​为政府补贴,IINlayer​为内层日收益反馈值。

  • 内层目标函数

    涵盖电价收益、光伏上网收益、电池充放电成本及运维成本。

3. 关键约束条件
  • 储能约束:SOC初末值均为0.5,充放电功率限制在
  • 功率平衡

二、改进粒子群算法(PSO)创新点

1. 算法改进措施
  • 分时电价初始化:根据峰谷电价分布特征初始化粒子位置,提升初始解质量。

     

  • 随机两维速度变异:迭代中随机选择两个维度进行速度扰动,避免局部最优。

  • 认知系数时变控制:动态调整个体认知系数c1c1​和社会认知系数c2c2​,公式为:

    其中k为当前迭代次数,K为总迭代次数。

  • 惯性权重自适应:结合进化代数动态调整权重,前期侧重全局搜索,后期偏向局部优化。

  • 位置限定条件:每次迭代后强制粒子在可行域内,增强解的可行性。

2. 性能优势
  • 相较于标准PSO,收敛速度提升51%,全局寻优能力增强65%。
  • 有效解决多元非线性规划问题,适应复杂能量调度场景。

三、实验参数与数据来源

1. 数据获取
  • 光伏出力:通过NASA POWER网站获取建筑所在地逐时太阳辐射数据,结合光电转换率(15%~20%)和系统效率(约85%)计算生成。
  • 建筑负荷:假设日用电量为50kWh,负荷分布曲线结合历史数据模拟。
  • 电价参数:采用某地区峰谷电价政策,高峰电价1.2元/kWh,低谷0.3元/kWh(表5)。
2. 关键参数设置
参数类型取值/范围数据来源
光伏面积20~160m²(步长5m²)
储能容量0.5~20kWh(步长0.5kWh)
光伏组件成本2000元/m²
储能循环寿命5000次
贴现率5%

四、标准PSO在能源领域的应用基础

  1. 基础流程(图2):
    • 粒子编码→初始化→适应度计算→个体/全局最优更新→速度位置更新→终止判断。

       

  2. 典型应用场景
    • 微电网容量配置(如文献[7]优化储能容量)
    • 冷热电联供系统调度(最小化运行成本与环境成本)
    • 无功功率优化(降低电网损耗)

五、方法效果验证

  1. 经济性提升
    • 最佳配置为30m²光伏+13kWh储能,投资回收期5.55年,总成本43722元。
    • 通过“峰谷套利”策略,日收益提升18%~25%。
  2. 技术指标
    • 光伏消纳率≥85%,储能循环效率90%。
  3. 普适性
    • 支持分时电价、政府补贴、碳交易等政策变量,适应不同区域场景。

六、Matlab实现框架

  1. 编程流程

    for A_PV = 20:5:160
        for E_b = 0.5:0.5:20
            [I_INlayer, S_b] = PSO_main(A_PV, E_b); % 内层PSO求解
            I_CCER = sum(A_PV * S_PV * N_y * lambda_e);
            C_PV = A_PV * (N_PO * x_PC / sum((1 + rs).^(0:20)) + x_PC);
            I_outlayer = C_PV / (I_CCER + N_y * I_INlayer);
            if I_outlayer > 0
                % 记录最优解
            end
        end
    end
    
  2. 输出结果

    • 功率分配曲线(光伏出力、电网供电、储能充放电、建筑负荷)
    • 储能SOC变化曲线(图5)

结论

该方法通过双层耦合模型与改进PSO算法的协同优化,实现了光储系统全寿命周期成本效益最大化。其创新性体现在:

  1. 模型设计:首次将容量配置与能量调度纳入统一优化框架。
  2. 算法改进:自适应参数调整策略显著提升求解效率。
  3. 工程价值:为“双碳”目标下的建筑光储系统推广提供普适性工具。

未来可扩展至多目标优化(如碳排放最小化)或与机器学习结合实现动态策略更新。

📚2 运行结果

部分代码:

%% 图3 负荷分布曲线
figure
plot(P_load      ,'-r^',...
                'Color',[1,0,0],...  
                'LineWidth',1,...
                'MarkerEdgeColor','k',...
                'MarkerFaceColor',[0 0 1],...
                'MarkerSize',5);
xlabel('时刻')
ylabel('功率/kW')
title('建筑负荷分布曲线')

%% 图4 储能荷电状态
figure
[min_I_outlayer,min_index] = min(I_outlayer);
S_b_best = S_b_INlayer(min_index,:);

plot(S_b_best        ,'-gd',...
                'Color',[0,0,1],...
                'LineWidth',1,...
                'MarkerEdgeColor','k',...
                'MarkerFaceColor',[0 0 1],...
                'MarkerSize',5);
xlabel('时刻')
ylabel('储能荷电状态')

%% 图5 最佳能量调度结果
A_PV = A_PVi(min_index);
E_b = E_bi(min_index);
P_PV = S_PV*A_PV;
P_b = zeros(1,24);
P_grid = zeros(1,24);
for t = 1:24
    P_b(t) = (S_b_best(t+1) - S_b_best(t))*E_b;
    P_grid(t) = P_load(t) + (S_b_best(t+1) - S_b_best(t))*E_b - P_PV(t);
end
figure
plot(P_PV , 'm^-','linewidth' , 1.2)
hold on
plot(P_grid , 'c*-','linewidth' , 1.2)
plot(P_b , 'k>-','linewidth' ,  1.2)
plot(P_load , 'r^-','linewidth' ,  1.2)
xlabel('时刻')
ylabel('功率/kW')
legend('光伏出力','电网供电','储能充放电','建筑负荷')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈柯蒙,肖曦,田培根等.一种建筑集成光储系统规划运行综合优化方法[J].中国电机工程学报,2023,43(13):5001-5012.DOI:10.13334/j.0258-8013.pcsee.220820.

🌈4 Matlab代码、数据、文档下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值