💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
一、双层耦合模型构建
1. 模型架构
采用外层容量配置-内层能量调度的双层耦合结构(图1):
- 外层模型:以光伏板面积APVAPV和储能额定容量EbEb为决策变量,以投资回收期最短为目标函数,遍历容量备选集(光伏:20~160m²,步长5m²;储能:0.5~20kWh,步长0.5kWh)。
- 内层模型:在给定容量配置下,以储能电池25小时荷电状态(SOC)为优化参数,以日运行收益最大为目标,通过改进PSO算法求解能量调度策略。
2. 数学表达
-
外层目标函数:
其中CPV为光伏系统成本,ISUB为政府补贴,IINlayer为内层日收益反馈值。
-
内层目标函数:
涵盖电价收益、光伏上网收益、电池充放电成本及运维成本。
3. 关键约束条件
- 储能约束:SOC初末值均为0.5,充放电功率限制在
。
- 功率平衡:
二、改进粒子群算法(PSO)创新点
1. 算法改进措施
-
分时电价初始化:根据峰谷电价分布特征初始化粒子位置,提升初始解质量。
-
随机两维速度变异:迭代中随机选择两个维度进行速度扰动,避免局部最优。
-
认知系数时变控制:动态调整个体认知系数c1c1和社会认知系数c2c2,公式为:
其中k为当前迭代次数,K为总迭代次数。
-
惯性权重自适应:结合进化代数动态调整权重,前期侧重全局搜索,后期偏向局部优化。
-
位置限定条件:每次迭代后强制粒子在可行域内,增强解的可行性。
2. 性能优势
- 相较于标准PSO,收敛速度提升51%,全局寻优能力增强65%。
- 有效解决多元非线性规划问题,适应复杂能量调度场景。
三、实验参数与数据来源
1. 数据获取
- 光伏出力:通过NASA POWER网站获取建筑所在地逐时太阳辐射数据,结合光电转换率(15%~20%)和系统效率(约85%)计算生成。
- 建筑负荷:假设日用电量为50kWh,负荷分布曲线结合历史数据模拟。
- 电价参数:采用某地区峰谷电价政策,高峰电价1.2元/kWh,低谷0.3元/kWh(表5)。
2. 关键参数设置
参数类型 | 取值/范围 | 数据来源 |
---|---|---|
光伏面积 | 20~160m²(步长5m²) | |
储能容量 | 0.5~20kWh(步长0.5kWh) | |
光伏组件成本 | 2000元/m² | |
储能循环寿命 | 5000次 | |
贴现率 | 5% |
四、标准PSO在能源领域的应用基础
- 基础流程(图2):
- 粒子编码→初始化→适应度计算→个体/全局最优更新→速度位置更新→终止判断。
- 粒子编码→初始化→适应度计算→个体/全局最优更新→速度位置更新→终止判断。
- 典型应用场景:
- 微电网容量配置(如文献[7]优化储能容量)
- 冷热电联供系统调度(最小化运行成本与环境成本)
- 无功功率优化(降低电网损耗)
五、方法效果验证
- 经济性提升:
- 最佳配置为30m²光伏+13kWh储能,投资回收期5.55年,总成本43722元。
- 通过“峰谷套利”策略,日收益提升18%~25%。
- 技术指标:
- 光伏消纳率≥85%,储能循环效率90%。
- 普适性:
- 支持分时电价、政府补贴、碳交易等政策变量,适应不同区域场景。
六、Matlab实现框架
-
编程流程:
for A_PV = 20:5:160 for E_b = 0.5:0.5:20 [I_INlayer, S_b] = PSO_main(A_PV, E_b); % 内层PSO求解 I_CCER = sum(A_PV * S_PV * N_y * lambda_e); C_PV = A_PV * (N_PO * x_PC / sum((1 + rs).^(0:20)) + x_PC); I_outlayer = C_PV / (I_CCER + N_y * I_INlayer); if I_outlayer > 0 % 记录最优解 end end end
-
输出结果:
- 功率分配曲线(光伏出力、电网供电、储能充放电、建筑负荷)
- 储能SOC变化曲线(图5)
结论
该方法通过双层耦合模型与改进PSO算法的协同优化,实现了光储系统全寿命周期成本效益最大化。其创新性体现在:
- 模型设计:首次将容量配置与能量调度纳入统一优化框架。
- 算法改进:自适应参数调整策略显著提升求解效率。
- 工程价值:为“双碳”目标下的建筑光储系统推广提供普适性工具。
未来可扩展至多目标优化(如碳排放最小化)或与机器学习结合实现动态策略更新。
📚2 运行结果
部分代码:
%% 图3 负荷分布曲线
figure
plot(P_load ,'-r^',...
'Color',[1,0,0],...
'LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0 0 1],...
'MarkerSize',5);
xlabel('时刻')
ylabel('功率/kW')
title('建筑负荷分布曲线')
%% 图4 储能荷电状态
figure
[min_I_outlayer,min_index] = min(I_outlayer);
S_b_best = S_b_INlayer(min_index,:);
plot(S_b_best ,'-gd',...
'Color',[0,0,1],...
'LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0 0 1],...
'MarkerSize',5);
xlabel('时刻')
ylabel('储能荷电状态')
%% 图5 最佳能量调度结果
A_PV = A_PVi(min_index);
E_b = E_bi(min_index);
P_PV = S_PV*A_PV;
P_b = zeros(1,24);
P_grid = zeros(1,24);
for t = 1:24
P_b(t) = (S_b_best(t+1) - S_b_best(t))*E_b;
P_grid(t) = P_load(t) + (S_b_best(t+1) - S_b_best(t))*E_b - P_PV(t);
end
figure
plot(P_PV , 'm^-','linewidth' , 1.2)
hold on
plot(P_grid , 'c*-','linewidth' , 1.2)
plot(P_b , 'k>-','linewidth' , 1.2)
plot(P_load , 'r^-','linewidth' , 1.2)
xlabel('时刻')
ylabel('功率/kW')
legend('光伏出力','电网供电','储能充放电','建筑负荷')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈柯蒙,肖曦,田培根等.一种建筑集成光储系统规划运行综合优化方法[J].中国电机工程学报,2023,43(13):5001-5012.DOI:10.13334/j.0258-8013.pcsee.220820.