【故障诊断】【pytorch】基于CNN-1D、2D故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、西储大学轴承数据集介绍

三、研究方法

1. 数据预处理

2. CNN-1D故障分类模型

3. CNN-2D故障分类模型

四、实验结果与分析

1. 实验设置

2. 实验结果

3. 结果分析

五、结论与展望

📚2 运行结果

2.1 CNN-1D故障分类

2.2 CNN-2D故障分类 

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、引言

轴承作为机械设备中的关键部件,其运行状态对于设备的整体性能和寿命具有重要影响。因此,对轴承故障进行及时、准确的诊断对于保障设备的安全运行具有重要意义。近年来,随着深度学习技术的不断发展,卷积神经网络(CNN)在图像识别、信号处理等领域取得了显著成果。本研究旨在利用CNN-1D和CNN-2D对西储大学轴承数据集进行故障分类,以期为轴承故障的智能诊断提供新的思路。

二、西储大学轴承数据集介绍

西储大学轴承数据集是机械故障诊断领域的标准数据集之一,包含了多种工况和故障类型的轴承振动数据。该数据集由凯斯西储大学提供,涵盖了正常运行的轴承数据以及内圈故障、外圈故障和滚动体故障等多种故障类型的数据。数据集的格式清晰,便于导入到MATLAB、Python等常用编程环境中进行进一步处理和分析。

三、研究方法

1. 数据预处理

对西储大学轴承数据集进行预处理,包括去噪、归一化等步骤,以提高数据质量。同时,将数据集划分为训练集、验证集和测试集,用于后续模型的训练和评估。

2. CNN-1D故障分类模型
  • 模型构建:利用一维卷积神经网络(CNN-1D)构建故障分类模型。CNN-1D能够自动提取振动信号的时域特征,适用于处理一维振动信号。
  • 特征提取:通过卷积层和池化层的堆叠,自动提取输入信号的特征。
  • 分类器:在特征提取的基础上,使用全连接层构建分类器,对故障类型进行分类。
3. CNN-2D故障分类模型
  • 数据转换:将一维振动信号通过时频变换(如小波变换)转换为二维时频图,以便利用二维卷积神经网络(CNN-2D)进行处理。
  • 模型构建:利用CNN-2D构建故障分类模型。CNN-2D能够提取二维时频图的特征,捕捉信号在时域和频域上的变化。
  • 特征提取与分类:与CNN-1D类似,通过卷积层和池化层提取特征,并使用全连接层进行分类。

四、实验结果与分析

1. 实验设置
  • 选用西储大学轴承数据集进行实验。
  • 将数据集划分为训练集、验证集和测试集,比例分别为70%、15%和15%。
  • 使用准确率、精确率、召回率和F1 Score等指标评估模型性能。
2. 实验结果
  • CNN-1D模型在测试集上的准确率较高,能够准确识别多种故障类型。
  • CNN-2D模型在处理复杂数据类型时表现出色,通过时频变换提取的特征具有更强的表示能力,但在计算成本上相对较高。
  • 对比实验发现,CNN-1D在处理一维振动信号时具有更高的效率,而CNN-2D在捕捉信号的时频特性上更具优势。
3. 结果分析
  • CNN-1D和CNN-2D在轴承故障诊断中均表现出色,但各有优劣。
  • CNN-1D适用于处理一维振动信号,具有更高的效率和较低的计算成本。
  • CNN-2D适用于处理复杂数据类型,通过时频变换提取的特征能够更全面地反映信号的特性,但在计算成本上相对较高。

五、结论与展望

本研究利用CNN-1D和CNN-2D对西储大学轴承数据集进行了故障分类研究。实验结果表明,CNN-1D和CNN-2D在轴承故障诊断中均具有较高的准确性,但各有优劣。未来研究可以进一步探索如何结合两者的优势,构建更加高效、准确的轴承故障诊断模型。同时,随着深度学习技术的不断发展,期待有更多新的模型和方法应用于轴承故障诊断领域,为设备的安全运行提供有力保障。

📚2 运行结果

2.1 CNN-1D故障分类

2.2 CNN-2D故障分类 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

<think>嗯,用户想用CNN做滚动轴承故障检测或诊断,我得先理清楚思路。首先,滚动轴承数据通常是一维的振动信号,而CNN一般是处理二维图像的,所以可能需要数据预处理,把一维信号转成二维的谱图,比如时频图或者频谱图。或者有没有直接处理一维信号的CNN结构呢?比如用一维卷积层。 然后,用户可能对数据集的获取不太清楚,需要提到常用的数据集,比如CWRU轴承数据集,这个在引用里提到过[^2][^3][^4]。数据预处理部分可能需要标准化、分段,或者生成时频图像,比如短时傅里叶变换或者小波变换。 接下来是模型结构的设计。根据引用里的例子,有用CNN-LSTM的[^3],也有DRSN-CNN[^2]。如果是纯CNN的话,可能需要多层卷积和池化,最后接全连接层分类。如果是处理二维图像,就标准的二维卷积;如果是一维信号,用一维卷积层。比如,用户可能不知道该怎么搭建这样的模型结构,需要给出一个示例代码框架,像引用[4]里的RollingBearingModel类那样,结合CNN和LSTM,但用户可能只需要CNN的话,可以简化模型。 然后是训练过程,损失函数用交叉熵,优化器用Adam,这些在引用[4]里提到过。还需要注意数据划分,比如训练集、测试集的划分,交叉验证等。另外,评估指标可能包括准确率、混淆矩阵或者F1分数等。 用户可能还会遇到数据不足的问题,这时候需要数据增强的方法,比如添加噪声、时间偏移等。或者使用迁移学习,用预训练的模型进行微调,不过滚动轴承数据和自然图像差异较大,可能效果有限,但可以尝试。 另外,引用里的资料提到了可视化,比如T-SNE,这可能有助于分析模型学到的特征。还有抗噪的方法,比如DRSN-CNN,可以处理噪声数据,提高鲁棒性,这可能是一个优化点。 用户可能还需要注意代码实现,比如使用PyTorch还是TensorFlow,引用里提到的实例代码用了PyTorch[^3]。所以示例代码可能需要用PyTorch来写,定义数据集类、模型结构、训练循环等。 最后,生成的相关问题应该覆盖用户可能进一步想了解的内容,比如数据预处理的具体步骤、模型优化方法、提升准确率的技巧,以及与其他模型的对比,比如和LSTM结合的效果等。</think>### CNN实现滚动轴承故障诊断方法 #### 一、数据准备与预处理 1. **数据集选择**:推荐使用凯斯西储大学(CWRU)轴承数据集,包含正常和10种故障类型的数据,采样频率12kHz/48kHz[^2] 2. **信号预处理**: - 标准化:$x_{norm} = \frac{x - \mu}{\sigma}$ - 分段采样:将长序列分割为$1024 \times 1$的样本段 - 时频变换:通过短时傅里叶变换(STFT)1D信号转为2D时频谱图 $$ X(m,k) = \sum_{n=0}^{N-1} x(n)w(n-m)e^{-j2\pi kn/N} $$ #### 二、CNN模型构建(PyTorch实现) ```python import torch import torch.nn as nn class BearingCNN(nn.Module): def __init__(self, num_classes=10): super().__init__() self.features = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, padding=1), # 输入通道1(灰度图) nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Dropout(0.5) ) self.classifier = nn.Sequential( nn.Linear(64*64*64, 128), # 根据实际输入尺寸调整 nn.ReLU(), nn.Linear(128, num_classes) ) def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) return self.classifier(x) ``` #### 三、关键技术要点 1. **抗噪设计**:可引入深度残差收缩网络(DRSN),通过软阈值化消除噪声[^2] 2. **混合架构**:CNN-LSTM组合可同时提取时空特征[^3] 3. **数据增强**: - 添加高斯噪声:$x_{noisy} = x + \epsilon,\ \epsilon \sim \mathcal{N}(0,\sigma^2)$ - 时间扭曲 - 随机缩放 #### 四、训练配置 ```python # 超参数设置 EPOCHS = 100 BATCH_SIZE = 64 LR = 1e-4 # 初始化组件 model = BearingCNN() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=LR) ``` #### 五、评估与优化 - 使用T-SNE可视化特征空间分布 - 混淆矩阵分析分类错误模式 - 引入F1-score评估不平衡数据表现: $$ F1 = 2 \times \frac{precision \times recall}{precision + recall} $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值