考虑通过控制分布式微发电机的无功功率注入来调节电力配电网的电压配置问题研究【IEEE56节点】(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于分布式微发电机无功功率注入的IEEE 123节点配电网电压调节研究

一、IEEE56节点配电网结构与电压特性分析

二、分布式微发电机无功调节机制与关键技术

三、电压调节面临的挑战与解决方案

四、数学建模与仿真验证

五、前沿研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

基于分布式微发电机无功功率注入的IEEE 123节点配电网电压调节研究

摘要:
本文考虑通过控制分布式微发电机的无功功率注入来调节电力配电网的电压配置问题。我们定义了一个非常普遍的纯局部反馈控制器类别,其中无功功率注入是基于局部电压测量进行调整的。这个类别包括文献中提出的大部分解决方案和最新的电网规范。我们表明这些策略不能保证所需的调节,因为每一个都可能存在一个在所需电压和功率约束方面不可行的平衡态。我们随后提出了一个网络反馈定律,以表明通过在微发电机之间增加短距离通信,可以设计出可以保证收敛到可行集合的控制策略。最后通过仿真展示了这种局部和网络策略之间的基本性能差距。

未来的电力分配网格预计将承载大量分布式微发电,并为日益增长的需求提供服务,例如由电动车更广泛的普及所推动。预计这些网格将出现拥塞现象,仅仅通过基于最坏情况分析的超大尺寸网络设计(安装即忘)无法有效解决。例如,这些低压和中压网络的电压配置将受到双向有功功率流的影响,预计过压和欠压情况会越来越频繁发生。

目前研究人员和从业者正在探索的一条途径是为微发电装置提供感知和计算能力,并利用其电力接口的灵活性从电网注入(或吸收)无功功率。如果得到适当控制,这些设备可以作为一种细粒度分布的无功功率补偿器网络,为配电网提供宝贵的辅助服务,最终防止可再生能源的削减,促进广泛的电动汽车普及,并推迟电网增强。

由于缺乏对配电网的全面状态监测,大部分针对电压调节的无功功率控制工作集中于纯粹的本地(即完全分散的)反馈策略(见图1)。根据这些策略,功率逆变器的无功功率注入根据实时测量值进行调整,这些测量值可以在功率逆变器连接到电网的点进行测量[5]。已经提出了不同的变体(见[6,第IV-D节]中的综述)。在大多数情况下,无功功率注入的参考值是根据测量电压幅值的静态函数计算的,通常具有死区和/或饱和[7]。已经提出了基于数据驱动的方法,以便根据过去数据或对电网需求和发电的先前信息来调整这些静态映射[8],[9]。在某些策略中,静态反馈还另外添加了一个前馈项,这是一个关于本地有功和无功功率需求的函数[10],[11]。基于电压灵敏度矩阵分析的静态反馈的离线优化(即斜率因子和阈值),已经在[12]中提出。

IEEE123节点: 

详细文章见第4部分。

一、IEEE56节点配电网结构与电压特性分析

IEEE56节点配电网作为典型的中压配电系统,其拓扑结构包含变电站、配电线路、配电变压器、分段开关及联络开关等核心组件。该网络具有显著地理特征,馈线走向与设备布局直接影响电压分布特性。从的电压分布曲线可知,在无光伏接入时,节点电压普遍低于1.0 p.u.,尤其在节点20附近出现显著电压跌落(电压下降幅度达0.05 p.u.以上)。引入光伏和柔性负荷后,节点电压整体提升至1.0-1.03 p.u.区间,但节点20附近仍存在0.02 p.u.的轻微跌落,说明末端节点电压稳定性是系统主要瓶颈。


时间维度分析显示,负荷峰谷时段对电压影响显著:白天光伏出力高峰期(10:00-16:00)电压可维持较高水平,而夜间负荷高峰时段(18:00-24:00)电压下降明显。重构算法(如IGWO、GWO)虽能改善电压分布,但部分节点仍存在0.03 p.u.的波动,凸显传统机械式调压设备的响应速度限制。

二、分布式微发电机无功调节机制与关键技术
  1. 无功功率-电压耦合机理
    分布式微发电机通过逆变器实现无功功率双向调节,其输出特性可由下式描述:

式中,线路阻抗(Ri,Xi​)和电压相角差(δi)直接影响无功功率分配精度。通过注入容性无功(+Q)可提升节点电压,感性无功(-Q)则用于抑制电压抬升。

  1. 多层级协调控制策略
    • 本地控制层:采用改进下垂控制,通过自适应虚拟阻抗补偿线路阻抗差异。例如,叠加虚拟阻抗项修正电压参考值,并结合电压恢复机制消除稳态偏差。
    • 区域协调层:基于模糊逻辑的分布式控制系统优先调节电压越限节点,同时通过邻近DG的无功互济减少输电网无功流动。南非22kV网络案例显示,该方法使功率因数从0.67提升至0.90。
    • 全局优化层:利用改进ADMM算法实现OLTC、CB与DG的协同优化,目标函数包含网损最小化和电压偏差惩罚项,约束条件覆盖设备动作次数与无功容量限制。
三、电压调节面临的挑战与解决方案
挑战类型具体问题创新解决方法
静态问题末端节点电压长期偏低光伏逆变器动态Q-V控制,结合储能充放电平抑波动
动态问题故障期间电压暂降IIDG低电压穿越策略,提供无功电流支撑
协同控制多设备动作冲突基于水循环算法的SVC-OLTC-SC协同优化模型
通信延迟分布式控制响应滞后自同步VSG控制策略,实现无通信依赖的功率解耦

四、数学建模与仿真验证
  1. 混合建模方法
    物理系统模型采用线性化潮流方程描述电网稳态,而DG动态特性通过混合系统模型刻画,包含连续(逆变器开关动态)和离散(通信延迟)状态变量。针对IEEE56节点系统,典型模型构建步骤包括:

    • 建立节点导纳矩阵,考虑DG接入点的等效阻抗
    • 定义DG控制方程(如VSG转子运动方程)
    • 集成负荷时变特性与网络重构约束
  2. 仿真平台与案例验证

    • MATLAB/Simulink:用于验证合环操作中的循环电流抑制策略,通过OLTC与DG协调控制将电压波动降低40%。
    • PSCAD/EMTDC:构建±10kV柔性直流配电网模型,改进下垂控制策略使电压调节响应时间缩短至50ms。
    • 数据驱动方法:基于Hankel矩阵的历史数据构建预测模型,在储能寿命衰减约束下实现滚动优化,电压越限概率降低62%。
五、前沿研究方向
  1. 人工智能融合:深度强化学习框架通过马尔可夫决策过程(MDP)定义状态-动作空间,奖励函数综合电压偏差与设备损耗,实现毫秒级实时控制。
  2. 跨电压等级协调:利用灵敏度分析划分动态控制区域,低压光伏参与中压网络调节,减少集中控制维度。
  3. 电力电子化趋势:STATCOM与光伏逆变器构成混合无功补偿系统,在56节点测试中展示出±5%电压偏差的全覆盖能力。
结论

IEEE56节点配电网的电压调节需综合考虑静态优化与动态响应能力。分布式微发电机的无功控制为核心手段,但需结合新型控制策略(如模糊逻辑协调、VSG自同步)与高级算法(改进ADMM、深度强化学习)实现多时间尺度优化。未来研究应聚焦于高比例可再生能源接入下的电压稳定边界分析,以及异构通信网络中的分布式控制鲁棒性提升。

📚2 运行结果

部分代码:

for k = 1:length(t)
    
    % PV production
    mpc.gen([1 2],PG) = pvproduction(k,1:2)';
    
    % power demands
    mpc.bus(1:(n-1),PD) = p(k,:)';
    mpc.bus(1:(n-1),QD) = q(k,:)';
    
    % solve PF equations
    results = runpf(mpc, mpoption('VERBOSE', 0, 'OUT_ALL',0));
    
    v_incremental(k,:) = results.bus(:,VM);
    
    if k==length(t)
        break;
    end

    % decentralized reactive power compensation
    q_incremental(k+1,:) = q_incremental(k,:) - max(v_incremental(k,c)-params.VMAX,0);
    q_incremental(k+1,:) = max(q_incremental(k+1,:), params.QMIN);
    mpc.gen([1 2],QG) = q_incremental(k+1,:)';
    
end

%% Networked control
disp('Simulation: networked control')

K = 10;                     % Sample time ratio for the inner feedback loop

v_networked = zeros(length(t),n);
q_networked = zeros(length(t),2);

lambda = zeros(length(t),2);
mu = zeros(1,2);
qhat = zeros(1,2);

G = gparameters(mpc,c);     % G gains

gamma = 1/(2*norm(G));      % gain of the inner feebdack loop
alpha = 10;                 % gain of the outer feedback loop

for k = 1:length(t)
    
    % PV production
    mpc.gen([1 2],PG) = pvproduction(k,1:2)';
    
    % power demands
    mpc.bus(1:(n-1),PD) = p(k,:)';
    mpc.bus(1:(n-1),QD) = q(k,:)';
    
    % solve PF equations
    results = runpf(mpc, mpoption('VERBOSE', 0, 'OUT_ALL',0));
    
    v_networked(k,:) = results.bus(:,VM);
    
    if k==length(t)
        break;
    end
    
    % networked reactive power compensation
    lambda(k+1,:) = max(0, lambda(k,:) + alpha*(v_networked(k,c) - params.VMAX));

    % inner loop
    for innerk = 1:K
        qhat = -lambda(k+1,:) + mu * G;
        mu = max(0, mu + gamma*(params.QMIN-qhat));
    end

    qhat = max(qhat, params.QMIN);
    q_networked(k+1,:) = qhat;
    mpc.gen([1 2],QG) = q_networked(k+1,:)';
    
end

%% Plots 
disp('Generate figures')

close all

colorone = [217,95,2]/255;
colortwo = [117,112,179]/255;
colorgrey = 200*[1,1,1]/255;

figure(1)
    hold on
    line([0 t(end)/60/60], [1 1], 'Color', 'black', 'LineStyle', '-')
    line([0 t(end)/60/60], [params.VMAX params.VMAX], 'Color', 'black', 'LineStyle', '--')
    plot(t/60/60,v_nocontrol, 'Color', colorgrey, 'LineWidth', 0.5)
    plot(t/60/60,v_nocontrol(:,c(1)), 'Color', colorone, 'LineWidth', 1)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以第2部分运行结果为准)

Saverio Bolognani , Ruggero Carli , Guido Cavraro , and Sandro Zampieri

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值