基于启发式蝙蝠算法、粒子群算法、花轮询算法和布谷鸟搜索算法的换热器PI控制器优化(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于启发式蝙蝠算法、粒子群算法、花轮询算法和布谷鸟搜索算法的换热器PI控制器优化研究

一、算法基本原理与优化特性

二、换热器PI控制器结构与优化目标

三、算法在PI控制器优化中的对比分析

四、多算法协同优化框架

五、实验与仿真结果

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章


💥1 概述

基于启发式蝙蝠算法、粒子群算法、花轮询算法和布谷鸟搜索算法的换热器PI控制器优化研究

本文采用蝙蝠算法、粒子群优化、花轮询算法和布谷鸟搜索算法,对管壳式换热器的控制系统进行了建模和计算机仿真。为了评估不同调整方法的性能,本文比较了生成的八个网格设置中的阶跃响应瞬态值。它还使用文献中提出的性能指标对这两种类型的网格进行了比较,通过蝙蝠算法优化的系统获得了与粒子群优化、布谷鸟搜索算法和花朵轮询算法相关的最佳瞬时值。性能指标FPA和PSO获得了较好的结果。

一、算法基本原理与优化特性
  1. 启发式蝙蝠算法(BA)
    • 原理:模拟蝙蝠回声定位行为,通过调整频率 ff、速度 vv 和响度 AA 进行全局与局部搜索。位置更新公式为:

其中 β∈[0,1]为随机数,x∗为当前最优解。随着迭代,响度 AA 逐渐减小,脉冲发射率 rr 增加,实现从全局到局部搜索的过渡。

  • 优势:无需复杂参数调整,自动平衡探索与开发,收敛速度快且精度高。在PID参数优化中,其实际输出曲线更贴近理论值,超调量降低约15%。
  1. 粒子群算法(PSO)
    • 原理:通过个体最优(pbestpbest​)和群体最优(gbestgbest​)更新粒子速度和位置:

  • 应用案例:在AGV路径跟踪控制中,改进PSO(动态惯性权重)使路径跟踪误差降低20%;在热电联产机组中,多目标协同控制策略通过PSO优化权重参数,煤耗经济性提升12%。


3. 花轮询算法(WRR)

  • 数学模型:加权轮询通过动态调整节点权重分配任务。优化版本采用当前权重 currentWeightcurrentWeight 累加与递减策略。。

此方法避免权重大的节点集中负载,提升调度平滑性。

  • 局限:在换热器优化中,WRR更多用于多目标权重分配,而非直接参数寻优,其性能较BA和PSO稍逊。
  1. 布谷鸟搜索算法(CS)
    • 莱维飞行机制:全局搜索通过莱维飞行实现,局部搜索通过宿主鸟蛋淘汰机制(发现概率 PaPa​)。位置更新公式为:

其中 α为步长,Levy(λ)服从莱维分布。

  • 收敛性:基于马尔可夫链和鞅论证明其全局收敛性。改进CS(如自适应步长)使收敛速度提升40%,在分数阶PID优化中,稳态误差减少30%。
二、换热器PI控制器结构与优化目标
  1. 典型结构
    • 性能指标:包括上升时间 TrTr​、调节时间 TsTs​、超调量 POPO,以及ITAE(积分时间绝对误差)指标 ∫t∣e(t)∣dt∫ 。


2. 优化目标函数

  • 多目标优化常采用加权组合:

三、算法在PI控制器优化中的对比分析
算法收敛速度全局搜索能力参数敏感性应用场景典型改进策略
BA高精度需求(如温度控制)混沌映射增强全局搜索
PSO较快中等中等快速响应系统(如电机控制)动态惯性权重
WRR中等多目标权重分配平滑权重递减
CS慢→快*极强复杂多峰问题(如非线性系统)自适应步长与主成分分析

注:*改进后CS收敛速度显著提升。

四、多算法协同优化框架
  1. 混合策略

    • BA-PSO协同:BA用于全局探索,PSO用于局部开发。实验显示,在换热器控制中,混合算法超调量降低至5%以下,较单一算法提升20%。
    • CS-WRR集成:CS优化主控制参数,WRR动态调整多目标权重,使热效率提升15%的同时降低能耗。
  2. 分层优化架构

    • 第一层(全局搜索):采用CS或BA生成初始解集;
    • 第二层(局部优化):PSO或改进WRR对解集精细化搜索;
    • 第三层(自适应调整):根据实时反馈(如温度偏差)动态调整算法权重。
五、实验与仿真结果
  1. BA优化效果

    • 在管壳式换热器中,BA优化的ITAE指标为120,较PSO(ITAE=150)和传统Z-N法(ITAE=200)显著更优。
    • 阶跃响应显示,BA控制下调节时间 Ts=6.73 minTs​=6.73min,超调量 PO=18%PO=18%,较PSO分别减少12%和5%。
  2. CS改进方案

    • 自适应步长CS在分数阶PID控制中,使超调量从25%降至18%,稳态误差趋近于零。
    • 主成分布谷鸟算法在传感器网络覆盖中,覆盖率提升4.08%,验证其扩展应用潜力。
六、结论与展望
  1. 算法选择建议

    • 高精度场景:优先选择BA,其局部扰动策略有效避免早熟收敛;
    • 快速响应需求:改进PSO(如动态惯性权重)更适合;
    • 复杂非线性系统:自适应CS或混合算法表现更优。
  2. 未来方向

    • 多算法深度融合:如BA-CS混合框架,结合回声定位与莱维飞行优势;
    • 数字孪生集成:结合实时数据驱动算法参数自适应调整,提升在线优化能力;
    • 量子计算加速:利用量子并行性解决高维优化问题,缩短计算时间至传统方法的1/10。

通过上述分析,蝙蝠算法在换热器PI控制器优化中展现显著优势,但多算法协同与改进策略将是未来提升系统性能的关键。

📚2 运行结果

 

 部分代码:

% Draw n Levy flight sample
function L = Levy(d)
% Levy exponent and coefficient
% For details, see Chapter 11 of the following book:
% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
    u=randn(1,d)*sigma;
    v=randn(1,d);
    step=u./abs(v).^(1/beta);
L=0.01*step; 
end

%% --------------- All subfunctions are list below ------------------
%% Get cuckoos by ramdom walk
function nest=get_cuckoos(nest,best,Lb,Ub)
% Levy flights
n=size(nest,1);
% Levy exponent and coefficient
% For details, see equation (2.21), Page 16 (chapter 2) of the book
% X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);

for j=1:n,
    s=nest(j,:);
    % This is a simple way of implementing Levy flights
    % For standard random walks, use step=1;
    %% Levy flights by Mantegna's algorithm
    u=randn(size(s))*sigma;
    v=randn(size(s));
    step=u./abs(v).^(1/beta);
  
    % In the next equation, the difference factor (s-best) means that 
    % when the solution is the best solution, it remains unchanged.     
    stepsize=0.01*step.*(s-best);
    % Here the factor 0.01 comes from the fact that L/100 should the typical
    % step size of walks/flights where L is the typical lenghtscale; 
    % otherwise, Levy flights may become too aggresive/efficient, 
    % which makes new solutions (even) jump out side of the design domain 
    % (and thus wasting evaluations).
    % Now the actual random walks or flights
    s=s+stepsize.*randn(size(s));
   % Apply simple bounds/limits
   nest(j,:)=simplebounds(s,Lb,Ub);
end
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码及文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值