写在前面:
本文参照杨帆老师的博客,根据自己的需要进行制作,杨帆老师博客原文链接如下:
一、环境准备
1、数据集制作环境
conda create -n your-env-name python=3.8 -y
conda activate your-env-name
数据集制作环境只需要YOLOv5和torch,下面命令是安装cuda11.1版本的torch的torchvision。
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install opencv-python-headless==4.1.2.30
提前下载好YOLOv5源码,cd到YOLOv5根目录,使用如下命令安装YOLOv5的依赖。
pip install -r requirements.txt
2、训练环境
训练环境本文严格依照MMaction2框架的安装环境,如有需要可参考如下链接:
安装 — MMAction2 1.2.0 文档https://mmaction2.readthedocs.io/zh-cn/latest/get_started/installation.html
2.1创建训练环境
conda create -n your-env-name python=3.8 -y
conda activate your-env-name
2.2安装Pytorch和对应版本的torchvision
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
2.3安装MMaction2依赖(使用mim安装命令)
使用mim命令可以自动解决版本问题
pip install -U openmim
mim install mmengine
mim install mmcv
mim install mmdet
mim install mmpose
2.4从源码构建MMaction2
git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
pip install -v -e .
2.5验证安装
请参考其他博客,进行MMaction2的安装验证
Win11系统下使用SlowFast训练AVA数据集-CSDN博客文章浏览阅读237次。本文主要讲述如何在Win11系统使用MMaction2框架下SlowFast网络进行AVA数据集的训练。