自动驾驶建图定位之RTK简介

作者丨大兵小将@知乎

来源丨https://zhuanlan.zhihu.com/p/607430371

编辑丨3D视觉工坊

点击进入—>3D视觉工坊学习交流群

一、RTK基本概念

实时动态差分法(Real-time kinematic,RTK,载波相位差分技术):基准站通过数据链将其载波观测量及站坐标信息一同传送给用户站。

用户站接收GPS卫星的载波相位与来自基准站的载波相位,组成相位差分观测值进行处理,计算后给出厘米级的定位结果。

RTK系统主要由三部分组成:

基准站(差分源)

差分数据通信链(网络,电台,3G/4G等)

用户站(终端)

二、RTK误精度分析

1、移动站和基站观测到的共同卫星数:RTK精确定位要求要求移动站与基站观测到5颗以上同样的多频段卫星才能实现RTK固定解,观测到越多的卫星就能越快速的得到RTK固定解。

2、移动站和基站距离:移动站与基站之间的距离有要求,低纬度地区的基站有效覆盖距离小,高纬度地区的距离远;随着移动站与基站的距离增加,误差会越来越大。

三、RTK解的形式

1、单点解:是RTK在工作的时候移动站和基准站互相不能联系,接收机未使用任何差分改正信息计算的3D坐标。

2、差分解:是有信号,但由于各种原因,比如卫星数量太少或移动站位置太远,导致交汇数据精确度非常低,一般偏差有几米或者十几二十米。

3、浮点解:精度相对高一点,但其精度一般是不可靠的,定位精度可接近于固定解或到达20-30cm,在城市中获取的一般是浮点解。

4、固定解:是最精确的数据,精度一般在3-5cm

39686ae65389a3cd1fb490d9ad235dba.png

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

e63c956172d73d0868dee976679c0c9b.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

c79d638446eaf4a175589344cb5603d7.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

<think>嗯,我现在需要解释一下激光雷达震动导致大范围误差的问题。首先,我得理解激光雷达的基本工作原理。激光雷达通过发射激光束并接收反射回来的信号来测量距离和生成周围环境的3D模型。当它发生震动时,可能会影响测量精度,但具体是怎么影响的呢? 可能的原因有几个方面。首先是机械结构的问题,比如安装不稳固或者材料刚性不足,在震动时导致激光发射器位置偏移。这时候,每次激光脉冲的方向可能都会偏差,累积起来就会产生大的误差。其次是传感器本身的校准问题,震动可能导致内部传感器(如IMU)的数据不准确,进而影响点云的对齐和定位。 然后,我需要考虑震动对测量数据的具体影响。比如,高频震动可能会让激光束的指向快速变化,导致点云出现噪点或扭曲。而低频的大幅度震动可能让整个扫描区域的位置偏移,比如在自动驾驶中,车辆行驶时的颠簸可能导致连续帧的点云无法正确匹配,定位就会出错。 再想想解决方案,用户可能需要知道如何减少这种误差。硬件方面,加强减震装置、使用更稳定的安装结构、选择高刚性的材料。软件方面,可能用滤波算法(如卡尔曼滤波)来补偿震动带来的噪声,或者通过传感器融合,结合IMU和GPS的数据来校正点云的位置。还有动态校准技术,实时调整激光雷达的参数,适应震动环境。 不过,有没有什么例子或者实际应用中的情况?比如自动驾驶汽车在颠簸路面行驶时,激光雷达的数据如果处理不好,会导致路径规划错误,甚至发生事故。或者工业机器人移动时震动导致定位偏差,影响操作精度。这些实例能帮助用户更好地理解问题的严重性。 另外,可能还要提到不同震动频率的影响差异。高频震动可能更容易被滤波器处理,而低频震动可能需要更复杂的算法来检测和补偿。还有,震动是否会导致系统的时间同步问题,比如激光发射和接收的时间戳如果因为震动而不准确,也会引入误差。 需要确保解释清晰,结构合理。先介绍激光雷达的基本原理,然后分析震动带来的影响,接着详细讲解误差产生的原因,再给出解决方案,最后举例说明实际应用中的应对措施。这样用户能逐步理解问题所在和解决办法。 在技术细节上,可能需要提到点云配准、SLAM算法在震动环境中的挑战,以及如何通过多传感器融合提高鲁棒性。例如,IMU可以提供短时间内的运动信息,帮助校正激光雷达的数据,而GPS或轮速计提供全局定位,减少累积误差。 还要注意,某些情况下,震动可能不仅是外部环境引起,也可能是激光雷达自身的工作振动,比如内部电机或扫描部件的运动。这时候,设计时的隔振措施就非常重要,比如使用阻尼材料或者主动振动控制系统。 总结一下,回答的结构应该是:问题现象→原理简介→误差原因(分硬件、数据采集、算法)→解决方案(硬件改进、算法优化、传感器融合)→实际应用案例。这样逻辑清晰,用户容易跟随。</think>激光雷达震动导致大范围误差的问题可分为以下几个部分逐步解析: --- ### **1. 激光雷达基本原理** 激光雷达(LiDAR)通过发射激光脉冲并接收反射信号,计算时间差来测量目标距离,结合扫描角度和位置信息生成高精度3D点云。其核心精度依赖于: - **激光发射/接收的时序控制** - **扫描角度精度** - **传感器(如IMU、编码器)的数据同步** --- ### **2. 震动引发误差的原因** #### **(1) 硬件层面的机械偏差** - **激光发射器偏移**:震动导致激光发射方向偏离标定角度,尤其高频震动会放大误差。 - **安装结构形变**:支架或外壳刚性不足时,震动会改变雷达整体位姿。 - **传感器信号干扰**:震动可能引起IMU(惯性测量单元)的加速度计/陀螺仪噪声,导致位姿估计错误。 #### **(2) 点云数据失真** - **扫描畸变**:震动中雷达持续运动,导致单帧点云的扫描线扭曲(如1)。 - **多帧配准失败**:SLAM(同步定位)依赖连续帧匹配,震动破坏点云一致性,造成定位漂移。 #### **(3) 算法局限性** - **运动补偿失效**:传统算法假设雷达在短时间(单帧扫描周期)内静止,剧烈震动时假设不成立。 - **滤波延迟**:卡尔曼滤波等算法可能无法实时响应高频震动。 --- ### **3. 误差影响示例** | **场景** | **具体表现** | |------------------------|----------------------------------------------------------------------------| | 自动驾驶颠簸路面 | 点云扭曲导致障碍物误判(如将路面噪点识别为虚拟障碍物) | | 无人机强风环境 | 定位漂移引发悬停失控或避障失败 | | 工业机器人移动搬运 | 末端执行器因误差与目标位置偏差,导致抓取失败 | --- ### **4. 解决方案** #### **(1) 硬件优化** - **减震设计**:使用橡胶阻尼器、主动隔振平台吸收特定频率震动。 - **刚性升级**:采用碳纤维支架或航空铝材减少形变。 - **多IMU冗余**:部署多个IMU融合数据,降低单个传感器噪声影响。 #### **(2) 算法增强** - **动态运动补偿**:在点云生成阶段融合IMU实时数据,修正扫描角度(公式): $$ \theta_{\text{corrected}} = \theta_{\text{raw}} + \int_{t_0}^{t} \omega(t) dt $$ 其中$\omega(t)$为陀螺仪测量的角速度。 - **自适应滤波**:结合小波变换分离震动噪声频段,针对性去噪。 #### **(3) 多传感器融合** - **紧耦合SLAM**:将LiDAR、IMU、摄像头数据联合优化,提升鲁棒性(如2)。 - **GPS辅助**:在开阔场景引入RTK-GPS提供绝对位置约束,抑制误差累积。 --- ### **5. 实际应用案例** - **Waymo自动驾驶**:采用定制减震支架+紧耦合LiDAR-IMU算法,可应对时速60km下的路面震动。 - **大疆无人机**:通过频域分析识别螺旋桨震动频率,在点云处理中主动滤除对应噪点。 --- ### **总结** 激光雷达震动误差是“机械-传感-算法”链式失效的结果,需通过**硬件抗干扰设计**、**动态补偿算法**及**多源数据融合**综合解决。实际应用中需根据震动频谱特性(如车载低频vs无人机高频)针对性优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值