ICRA 2023 | 移动机器人/SLAM相关论文

c58d2d43bd3e7a2b26541ed51c68173d.png

ICRA 2023 Mobile-Robot/SLAM Selection Paper

  • 0006: Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo Cameras

  • 0072: A Global Max-Flow-Based Multi-Resolution Next-Best-View Method for Reconstruction of 3D Unknown Objects

  • 0077: Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping

  • 0084: Multimodal Neural Radiance Field

  • 0106: Autonomous Exploration in a Cluttered Environment for a Mobile Robot with 2D-Map Segmentation and Object Detection

  • 0120: DynaVINS: A Visual-Inertial SLAM for Dynamic Environments

  • 0121: ViViD++ : Vision for Visibility Dataset

  • 0124: Rearrange Indoor Scenes for Human-Robot Co-Activity

  • 0144: Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

  • 0145: Stein ICP for Uncertainty Estimation in Point Cloud Matching

  • 0146: Faster-LIO: Lightweight Tightly Coupled Lidar-inertial Odometry using Parallel Sparse Incremental Voxels

  • 0176: Visual-Inertial Odometry with Online Calibration of Velocity-Control Based Kinematic Motion Models

  • 0178: Reuse your features: unifying retrieval and feature-metric alignment

  • 0181: Homography-based loss function for camera pose regression

  • 0184: 360-DFPE: Leveraging Monocular 360-Layouts for Direct Floor Plan Estimation

  • 0188: ORORA: Outlier-Robust Radar Odometry

  • 0216: GNM: A General Navigation Model to Drive Any Robot

  • 0220: NeRF-Loc: Visual Localization with Conditional Neural Radiance Field

  • 0221: Light-Weight Pointcloud Representation with Sparse Gaussian Process

  • 0222: Fusing Event-based Camera and Radar for SLAM Using Spiking Neural Networks with Continual STDP Learning

  • 0258: Cross-Modality Time-Variant Relation Learning for Generating Dynamic Scene Graphs

  • 0349: NIFT: Neural Interaction Field and Template for Object Manipulation

  • 0367: Pose-graph SLAM Using Multi-order Ultrasonic Echoes and Beamforming for Long-range Inspection Robots

  • 0387: DS-K3DOM: 3-D Dynamic Occupancy Mapping with Kernel Inference and Dempster-Shafer Evidential Theor

  • 0394: Direct LiDAR-Inertial Odometry: Lightweight LIO with Continuous-Time Motion Correction

  • 0425: Learning Augmented, Multi-Robot Long-Horizon Navigation in Partially Mapped Environments

  • 0431: Multi-Object Navigation in real environments using hybrid policies

  • 0434: Frontier Semantic Exploration for Visual Target Navigation

  • 0437: CamMap: Extrinsic Calibration of Non-Overlapping Cameras Based on SLAM Map Alignment

  • 0455: Hybrid Visual SLAM for Underwater Vehicle Manipulator Systems

  • 0457: Data-driven Loop Closure Detection in Bathymetric Point Clouds for Underwater SLAM

  • 0490: Conditional GANs for Sonar Image Filtering with Applications to Underwater Occupancy Mapping

  • 0495: FingerSLAM: Closed-loop Unknown Object Localization and Reconstruction from Visuo-tactile Feedback

  • 0503: Real-Time Dense 3D Mapping of Underwater Environments

  • 0507: iMODE:Real-Time Incremental Monocular Dense Mapping Using Neural Field

  • 0512: Lighthouses and Global Graph Stabilization: Active SLAM for Low-compute, Narrow-FoV Robots

  • 0516: Convolutional Bayesian Kernel Inference for 3D Semantic Mapping

  • 0542: Zero-Shot Object Goal Visual Navigation

  • 0550: Learning to View: Decision Transformers for Active Object Detection

  • 0551: ARMBench: An Object-centric Benchmark Dataset for Robotic Manipulation

  • 0552:Informable Multi-Objective and Multi-Directional RRT∗ System for Robot Path Planning

  • 0553:Online Visual SLAM Adaptation against Catastrophic Forgetting with Cycle-Consistent Contrastive Learning

  • 0569:The SLAM Hive Benchmarking Suite

  • 0587:EdgeVO: An Effcient and Accurate Edge-based Visual Odometry

  • 0589:WOLF: A modular estimation framework for robotics based on factor graphs

  • 0610:GMM Registration: a Probabilistic scan matching approach for sonar-based AUV navigation

  • 0614:General, Single-shot, Target-less, and Automatic LiDAR-Camera Extrinsic Calibration Toolbox

  • 0645:Swarm-LIO: Decentralized Swarm LiDAR-inertial Odometry

  • 0649:RoboSC: a domain-specific language for supervisory controller synthesis of ROS applications

  • 0673:Non-Minimal Solvers for Relative Pose Estimation with a Known Relative Rotation Angle

  • 0685:Enforcing safety for vision-based controllers via Control Barrier Functions and Neural Radiance Fields

  • 0697:WAVN: Wide Area Visual Navigation for Large-scale, GPS-denied Environments

  • 0701:STD: Stable Triangle Descriptor for 3D place recognition

  • 0702:ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration

  • 0790:Factor Graph Fusion of Raw GNSS Sensing with IMU and Lidar for Precise Robot Localization without a Base Station

  • 0820:Neural Implicit Surface Reconstruction using Imaging Sonar

  • 0833:NeRF2Real: Sim2real Transfer of Vision-guided Bipedal Motion Skills using Neural Radiance Fields

  • 0884:SCORE: A Second-Order Conic Initialization for Range-Aided SLAM

  • 0898:Scene-level Point Cloud Colorization with Semantics-and-geometry-aware Networks

  • 0909:Stochastic Planning for ASV Navigation Using Satellite Images

  • 0912:Efficient Visual-Inertial Navigation with Point-Plane Map

  • 0918:PIEKF-VIWO: Visual-Inertial-Wheel Odometry using Partial Invariant Extended Kalman Filter

  • 0921:Inverse Perspective Mapping-Based Neural Occupancy Grid Map for Visual Parking

  • 0947:Continuous-Time LiDAR-Inertial-Vehicle Odometry Method with Lateral Acceleration Constraint

  • 0952:Monocular Visual-Inertial Odometry with Planar Regularities

  • 0963:Wild-Places: A Large-Scale Dataset for Lidar Place Recognition in Unstructured Natural Environments

  • 0965:Multimodal Image Registration for GPS-denied UAV Navigation Based on Disentangled Representations

  • 0981:SM/VIO: Robust Underwater State Estimation Switching Between Model-based and Visual Inertial Odometry

  • 0982:Constraint Manifolds for Robotic Inference and Planning

  • 1074:Descriptor Distillation for Efficient Multi-Robot SLAM

  • 1107:Exploring Navigation Maps for Learning-Based Motion Prediction

  • 1116:Global Localization in Repetitive and Ambiguous Environments

  • 1197:Knowledge Distillation for Feature Extraction in Underwater VSLAM

  • 1213:DAMS-LIO: A Degeneration-Aware and Modular Sensor-Fusion LiDAR-inertial Odometry

  • 1267:Question Generation for Uncertainty Elimination in Referring Expressions in 3D Environments

  • 1291:Robust Incremental Smoothing and Mapping (riSAM)

  • 1309:Robust Map Fusion with Visual Attention Utilizing Multi-agent Rendezvous

  • 1316:BAMF-SLAM: Bundle Adjusted Multi-Fisheye Visual-Inertial SLAM Using Recurrent Field Transforms

  • 1331:Towards View-invariant and Accurate Loop Detection Based on Scene Graph

  • 1343:DisCo: A Multiagent 3D Coordinate System for Lattice Based Modular Self-Reconfigurable Robots

  • 1370:Detecting spatio-temporal Relations by Combining a Semantic Map with a Stream Processing Engine

  • 1371:Monocular Simultaneous Localization and Mapping using Ground Textures

  • 1380:Combining Motion and Appearance for Robust Probabilistic Object Segmentation in Real Time

  • 1393:A Moving Target Tracking System of Quadrotors with Visual-Inertial Localization

  • 1414:Efficient Planar Pose Estimation via UWB Measurements

  • 1434:Online Consistent Video Depth with Gaussian Mixture Representation

  • 1471:ASRO-DIO: Active Subspace Random Optimization based Depth Inertial Odometry

  • 1524:Multi-Robot 3D Gas Distribution Mapping: Coordination, Information Sharing and Environmental Knowledge

  • 1547:COVINS-G: A Generic Back-end for Collaborative Visual-Inertial SLAM

  • 1550:kollagen: A Collaborative SLAM Pose Graph Generator

  • 1638:Neural-Kalman GNSS/INS Navigation for Precision Agriculture

  • 1664:FloorplanNet: Learning Topometric Floorplan Matching for Robot Localization

  • 1671:A Probabilistic Framework for Visual Localization in Ambiguous Scenes

  • 1679:Sensor Localization by Few Distance Measurements via the Intersection of Implicit Manifolds

  • 1700:Portable Multi-Hypothesis Monte Carlo Localization for Mobile Robots

  • 1704:Contour Context: Abstract Structural Distribution for 3D LiDAR Loop Detection and Metric Pose Estimation

  • 1739:SRI-Graph: A Novel Scene-Robot Interaction Graph for Robust Scene Understanding

  • 1767:Feature-Realistic Neural Fusion for Real-Time, Open Set Scene Understanding

  • 1812:Active Metric-Semantic Mapping by Multiple Aerial Robots

  • 1824:Loc-NeRF: Monte Carlo Localization using Neural Radiance Fields

  • 1856:LidarAugment: Searching for Scalable 3D LiDAR Data Augmentations

  • 1858:3D VSG: Long-term Semantic Scene Change Prediction through 3D Variable Scene Graphs

  • 1861:CIOT: Constraint-Enhanced Inertial-Odometric Tracking for Articulated Dump Trucks in GNSS-Denied Mining Environments

  • 1897:PredRecon: A Prediction-boosted Planning Framework for Fast and High-quality Autonomous Aerial Reconstruction

  • 1906:Cross-Agent Relocalization for Decentralized Collaborative SLAM

  • 1929:MOFT: Monocular odometry based on deep depth and careful feature selection and tracking

  • 1949:Semantics-aware Exploration and Inspection Path Planning

  • 1991:Autonomous Navigation in Unknown Environments With Sparse Bayesian Kernel-Based Occupancy Mapping

  • 2013:FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for Egocentric multi-robot exploration

  • 2018:SEER: Safe Efficient Exploration for Aerial Robots using Learning to Predict Information Gain

  • 2042:Adaptive Keyframe Generation based LiDAR Inertial Odometry for Complex Underground Environments

  • 2090:Multitask Learning for Scalable and Dense Multilayer Bayesian Map Inference

  • 2094:GUTS: Generalized Uncertainty-Aware Thompson Sampling for Multi-Agent Active Search

  • 2149:Finding Things in the Unknown: Semantic Object-Centric Exploration with an MAV

  • 2155:Efficient View Path Planning for Autonomous Implicit Reconstruction

  • 2215:Multi-Agent Active Search using Detection and Location Uncertainty

  • 2270:Robot Person Following Under Partial Occlusion

  • 2280:From Semi-supervised to Omni-supervised Room Layout Estimation Using Point Clouds

  • 2313:Sequence-Agnostic Multi-Object Navigation

  • 2363:Learning to Explore Informative Trajectories and Samples for Embodied Perception

  • 2369:Neural Grasp Distance Fields for Robot Manipulation

  • 2375:Mono-STAR: Mono-camera Scene-level Tracking and Reconstruction

  • 2398:Multi-Objective Ergodic Search for Dynamic Information Maps

  • 2403:Large-Scale Radar Localization using Online Public Maps

  • 2436:4DRadarSLAM: A 4D Imaging Radar SLAM System for Large-scale Environments based on Pose Graph Optimization

  • 2437:Improving the Performance of Local Bundle Adjustment for Visual-Inertial SLAM with Efficient Use of GPU Resources

  • 2512:The Reflectance Field Map: Mapping Glass and Specular Surfaces in Dynamic Environments

  • 2526:SLAMER: Simultaneous Localization and Map-Assisted Environment Recognition

  • 2627:Safe and Efficient Navigation in Extreme Environments using Semantic Belief Graphs

  • 2635:Fast and Scalable Signal Inference for Active Robotic Source Seeking

  • 2642:Density-aware NeRF Ensembles: Quantifying Predictive Uncertainty in Neural Radiance Field

  • 2678:Visual Language Maps for Robot Navigation

  • 2757:Efficient Bundle Adjustment for Coplanar Points and Lines

  • 2767:GP-Frontier for Local Mapless Navigation

  • 2822:Learning Continuous Control Policies for Information-Theoretic Active Perception

  • 2910:SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations

  • 2977:SLAMesh: Real-time LiDAR Simultaneous Localization and Meshing

  • 3006:A System for Generalized 3D Multi-Object Search

  • 3036:Probabilistic Plane Extraction and Modeling for Active Visual-Inertial Mapping

  • 3039:GraspNeRF: Multiview-based 6-DoF Grasp Detection for Transparent and Specular Objects Using Generalizable NeRF

  • 3083:A real-time dynamic obstacle tracking and mapping system for UAV navigation and collision avoidance with an RGB-D camera

  • 3088:DytanVO: Joint Refinement of Visual Odometry and Motion Segmentation in Dynamic Environments

  • 3098:NOCaL: Calibration-Free Semi-Supervised Learning of Odometry and Camera Intrinsics

  • 3123:Monocular Visual-Inertial Depth Estimation

  • 3168:Effcient Implicit Neural Reconstruction Using LiDAR

  • 3171:Real-Time Simultaneous Localization and Mapping with LiDAR Intensity

  • 3185:Deep Unsupervised Visual Odometry Via Bundle Adjusted Pose Graph Optimization

  • 3188:Data-Association-Free Landmark-based SLAM

  • 3197:RoLM: Radar on LiDAR Map Localization

  • 3206:Object-based SLAM utilizing unambiguous pose parameters considering general symmetry types

  • 3215:Memory-based Exploration-value Evaluation Model for Visual Navigation

  • 3293:Mapping Waves with an Uncrewed Surface Vessel via Gaussian Process Regression

  • 3320:RAMP: A Risk-Aware Mapping and Planning Pipeline for Fast Off-Road Ground Robot Navigation

  • 3343:Object-aware Monocular Depth Prediction with Instance Convolutions

  • 3507:Discrete-Continuous Smoothing and Mapping

  • 3527:Uncertainty Guided Policy for Active Robotic 3D Reconstruction using Neural Radiance Fields

  • 3560:UWB-VIO Fusion for Accurate and Robust Relative Localization of Round Robotic Teams

  • 3595:Generalized LOAM: LiDAR Odometry Estimation with Trainable Local Geometric Features

  • 3606: Point Cloud Change Detection With Stereo V-SLAM: Dataset, Metrics and Baseline

  • 3615: BoW3D: Bag of Words for Real-Time Loop Closing in 3D LiDAR SLAM

  • 3616: Deep IMU Bias Inference for Robust Visual-Inertial Odometry with Factor Graphs

  • 3617: Sigma-FP: Robot Mapping of 3D Floor Plans with an RGB-D Camera under Uncertainty

  • 3618: A Framework to Co-Optimize Robot Exploration and Task Planning in Unknown Environments

  • 3640: Hilti-Oxford Dataset: A Millimeter-Accurate Benchmark for Simultaneous Localization and Mapping

  • 3643: IC-GVINS: A Robust, Real-time, INS-Centric  GNSS-Visual-Inertial Navigation System

  • 3652: Gaussian Mixture Midway-Merge for Object SLAM With Pose Ambiguity

  • 3658: Improving Self-Consistency in Underwater Mapping through Laser-Based Loop Closure

  • 3665: Picking Up Speed: Continuous-Time Lidar-Only Odometry using Doppler Velocity Measurements

  • 3683: Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU

  • 3685: Long-Term Localization using Semantic Cues in Floor Plan Maps

  • 3692: Fast and Versatile Feature-Based LiDAR Odometry via Efficient Local Quadratic Surface Approximation

  • 3699: SOFT2: Stereo Visual Odometry for Road Vehicles based on a Point-to-Epipolar-Line Metric

  • 3700: Self-Supervised Feature Learning for Long-Term Metric Visual Localization

  • 3701: GraffMatch: Global Matching of 3D Lines and Planes for Wide Baseline LiDAR Registration

  • 3702: maplab 2.0 – A Modular and Multi-Modal Mapping Framework

  • 3709: Long-Term Visual SLAM With Bayesian Persistence Filter Based Global Map Prediction

—END—


高效学习3D视觉三部曲

第一步 加入行业交流群,保持技术的先进性

目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

b510a9543085c016763b279658736fed.jpeg
添加小助理微信:dddvisiona, 拉你入群
第二步 加入知识星球,问题及时得到解答

针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」

学习3D视觉核心技术,扫描查看,3天内无条件退款 8892c4a2c989fdec2a5df77bfec1ac56.jpeg
高质量教程资料、答疑解惑、助你高效解决问题
第三步 系统学习3D视觉,对模块知识体系,深刻理解并实践

如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com

工业3D视觉方向课程:

[1]机械臂抓取从入门到实战课程(理论+源码)

[2]从零搭建一套结构光3D重建系统理论+源码+实践

[3]三维点云处理:算法与实战汇总

[4]彻底搞懂基于Open3D的点云处理教程!

[5]3D视觉缺陷检测教程:理论与实战!

[6]如何学习相机模型与标定?(代码+实战)

SLAM方向课程:

[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战

[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化

[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析

[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)

[5]ORB-SLAM3理论讲解与代码精析(第2期)

[6]ROS2从入门到精通:理论与实战

视觉三维重建

[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)

自动驾驶方向课程:

[1]单目深度估计方法:算法梳理与代码实现

[2]面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)

[3]如何将深度学习模型部署到实际工程中?(分类+检测+分割)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值