你了解‌Sim2Real吗?‌Sim2Real最新进展如何

‌Sim2Real‌是“Simulation to Reality”的缩写,意思是“从模拟到现实”,主要应用于机器学习等领域。为增进大家对‌Sim2Real的认识,本文将对‌Sim2Real主流观点以及‌Sim2Real的进展予以介绍。如果你对‌Sim2Real具有兴趣,不妨和小编一起来继续往下阅读哦。

贾奎教授认为,要实现高通用性的具身智能,核心是需要海量的带有物理世界属性的数据。有别于语言、图像等可以从网络上大量获取以形成通用能力的数据,三维数据,尤其是机器人在物理空间中的操作数据,需要经过精确标定,且采集过程中存在难度大、周期长、成本高等问题。因此,通过基于3D生成式AI的 Sim2Real 仿真成为解决高通用性具身智能数据需求的最高效路径。

而基于 Sim2Real AI 实现高通用性具身智能的门槛极高,至少需要具备底层可控的具身属性物理仿真、高效大模型训练与持续学习、有效应对合成与真实数据域差别、低成本海量数字资产等能力,才能实现 Sim2Real 方式的真正落地。

贾奎教授表示,基于在 Sim2Real 具身智能领域拥有的深厚技术和产品积累,跨维智能已构建起一套完整的底层技术到产品再到业务的逻辑框架。其中自主研发的DexVerse™ 具身智能引擎,通过3D 生成式AI 与仿真技术,模拟真实世界中的丰富场景和任务,有效解决了传统方法中三维数据获取难、标定要求高的问题,能够支持大规模仿真,并可自动化完成从数据标注到模型训练的全过程。过程中不仅加速了数据生成,还确保了模型的鲁棒性和泛化能力。

突破性进展:机器人“修炼”加速万倍,仅需1.5m参数!

Jim Fan团队的最新研究成果令人震惊:机器人通过在虚拟“道场”中进行为期一年的训练,却仅在现实世界中花费了50分钟!更令人难以置信的是,训练结果无需任何微调,即可直接应用于现实世界。这是否预示着未来人们可以在虚拟世界中体验一万年的人生?

这一突破的关键在于一个仅有1.5M参数的超小型模型。相比之下,谷歌的Gato拥有11.8亿参数,Meta的TACO拥有2.5亿参数,OpenAI的CLIPort拥有4亿参数。如此巨大的参数差异,凸显了Jim Fan团队模型的效率和创新性。“并非所有基础模型都需要庞大的参数量,”Jim Fan强调,小巧的模型同样可以高效运作。

这款名为HOVER的多模式策略蒸馏框架,由英伟达GEAR团队研发,Jim Fan和朱玉可共同领导。HOVER实现了机器人训练的通用性。以往,机器人完成不同任务需要依赖特定的控制策略,例如导航任务需要速度或位置跟踪,桌面任务则需要上半身关节角度跟踪。这种“专精”模式限制了机器人的通用能力。

HOVER的创新之处在于将全身运动模仿作为所有任务的共同抽象,让机器人通过学习通用的运动技能来掌握全身控制模式。这如同人类潜意识的运作机制,大脑会进行一系列计算以迅速反应。HOVER模仿这种机制,实现了多种控制模式的整合和自然衔接。

HOVER支持多种高级运动指令输入,并可在英伟达Isaac平台上训练各种人形机器人,实现了机器人训练的跨平台通用性。这打破了以往机器人训练的封闭性和低效性,让不同团队的机器人能够协同进化。

Jim Fan的远大目标早已显露,“2024年将是机器人、游戏AI和模拟的一年。”GEAR团队致力于解决机器人基础模型、游戏基础模型和生成式模拟这三大问题。黄仁勋也指出,“下一波AI浪潮将是物理性的AI”,而具身智能正是关键。

Sim2Real(模拟到现实)是具身智能领域的核心挑战,Jim Fan的研究正是聚焦于此。他的同门师兄苏昊也致力于Sim2Real,但选择从真实世界的数据入手,并创建了Hillbot,利用3D生成式AI技术和SAPIEN模拟器,高效生成训练数据,提升机器人训练速度。

Sim2Real面临“现实鸿沟”的挑战,但Jim Fan和苏昊团队的研究,以及其他团队在数据合成、模拟平台和多任务泛化方面的努力,都在不断缩小这一差距。 “数字表亲”概念的提出也为解决模拟与现实差异提供了新的思路。 未来,更强大的世界模型和更通用的机器人开发环境将成为Sim2Real的关键。

### Isaac Gym Sim2Real 应用与教程 Isaac Gym 是 NVIDIA 开发的一个高性能物理仿真库,专为机器人技术和强化学习设计。Sim2Real 技术旨在通过高精度仿真实现虚拟环境中的训练成果能够无缝迁移到实际硬件上。 #### 高性能仿真支持 Isaac Gym 提供了多线程并行计算能力以及 GPU 加速功能来提升大规模场景下的实时交互效率[^1]。这使得复杂模型可以在短时间内完成大量迭代优化过程,从而加速算法收敛速度。 #### 物理属性匹配 为了确保从模拟过渡到真实的准确性,在构建仿真环境中需尽可能精确地复制目标系统的动力学特性、摩擦系数和其他相关参数。对于 TurtleBot 或者汽车这类移动平台而言,通常只需要关注偏航角(Yaw),而将横滚(Roll) 和俯仰(Pitch) 设置为零即可获得良好的近似效果[^3]。 #### 数据增强技术 采用数据增强方法可以有效减少由于传感器噪声等因素引起的误差累积问题。通过对输入信号加入随机扰动项来进行预处理操作,可以使训练出来的策略更加鲁棒稳定。 #### 实际案例分析 NVIDIA 官方提供了多个关于如何利用 isaac gym 进行情感识别、物体抓取等任务的教学资源。这些资料不仅涵盖了理论基础介绍还包含了具体实现细节说明,非常适合初学者入门学习。 ```python import torch from omniisaacgymenvs.utils.config_utils import parse_config config = parse_config('path/to/config.yaml') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值