必看综述!自动驾驶中三维目标检测与跟踪主流方案!

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

854f3e6290be3dad64877cef36152473.jpeg

0.这篇文章干了啥?

这篇文章是一篇综述,总结了当前最新的3D物体检测方法。文章首先介绍了两种主要的物体检测方法:两阶段方法和一阶段方法。两阶段方法需要首先生成一系列提议,然后再对这些提议进行处理;而一阶段方法则直接预测类别概率和回归边界框,省略了提议生成的步骤,速度更快,适用于实时系统。文章还介绍了点云数据在物体检测中的优势,如几何位置信息和深度信息,以及点云的一些缺点,如稀疏性和不规则性。接着,文章列举了当前流行的引入不同类型输入的方法,如激光雷达点和摄像头数据。最后,文章提出了一些需要进一步研究的问题,如如何更高效地处理点云数据以及如何处理大规模点云数据等。文章的目的是帮助读者了解当前3D物体检测领域的最新进展和存在的挑战,为未来的研究提供指导。

下面一起来阅读一下这项工作~

1. 论文信息

论文题目: Deep learning for 3D Object Detection and Tracking in Autonomous Driving: A Brief Survey

作者:Yang Peng

作者机构:Southern University of Science and Technology

论文链接:https://arxiv.org/pdf/2311.06043

2. 摘要

目标检测和跟踪是自动驾驶中至关重要且基础的任务,旨在从场景中预定义类别的对象中识别和定位对象。在所有自动驾驶数据形式中,3D点云学习正越来越受到关注。目前,有许多用于3D对象检测的深度学习方法。然而,由于点云数据的独特特性,对点云进行对象检测和跟踪的任务仍需要深入研究。为了帮助更好地了解这一研究领域的现状,本文展示了用于3D对象检测和跟踪的深度学习方法的最新进展。

3.引言

目标检测一直是计算机视觉领域中的重要课题。作为图像理解的基石,目标检测广泛应用于诸如自动驾驶和机器人视觉等众多领域。目标检测使得自动驾驶系统能够清晰地看到驾驶环境,并理解这些环境就像人类驾驶员一样。随着深度学习的快速发展,学习复杂、微妙和抽象特征的深度学习模型变得更加容易,而无需像传统方法那样进行手动特征提取。鉴于深度学习处理数据的出色能力,目标检测研究取得了重大进展。2D目标检测的研究已经得到了很好的发展。为解决2D目标检测问题提出的算法的准确性和效率已达到了较高水平,并且这些方法在工程实践中起着重要作用。在结合深度学习技术之前,基于滑动窗口的传统检测策略一直保持着主流地位。在深度学习未应用于检测时,上述目标检测方法的流程通常可分为三个部分:i) 提议生成;ii) 特征向量提取;iii) 区域分类。提议生成的主要任务是搜索整个图像,找到可能包含预期对象的位置。这些位置被称为感兴趣区域(ROI)。滑动窗口技术是一种直观的想法,用于扫描输入图像并找到ROI。在第二阶段,算法将从图像的每个目标位置提取一个固定长度的特征向量。梯度直方图是Navneet Dalal和Bill Triggs提出的最流行的特征提取方法之一。通常,线性支持向量机与HOG一起使用,实现区域分类。通过这些传统的检测器,在目标检测方面取得了很大成功。然而,在这里仍然存在一些局限性。基于滑动窗口的方法的巨大搜索空间和昂贵的计算鼓励寻找更好的解决方案。此外,不容忽视的一个缺点是设计和优化检测器的过程是分开的。这可能导致系统的局部最优解。自从深度学习出现在这一领域以来,它在检测对象方面变得更加强大。这些使用深度学习技术的目标检测系统可以比过去更轻松、更迅速地处理问题。我们观察到,自2012年Krizhevsky等人提出了用于图像分类的DCNN以来,基于深度学习的方法不断涌现。目前,目标检测算法的主流可以分为两类:i)两阶段方法,如基于区域的CNN(R-CNN)及其变体;ii)一阶段方法,如You Only Look Once(YOLO)及其变体。两阶段方法是一种基于区域提议的方法,首先提出一些可能包含对象的区域,然后分别从这些区域提取特征向量。一阶段方法则直接在特征图的位置上预测对象的类别,省略了区域分类步骤。不同种类的方法各有优点。Fast-RCNN缩短了先前网络的处理时间。然而,一个瓶颈让人们很困扰,因为这个网络的计算非常昂贵。直到Faster-RCNN的出现,这个问题才得以解决。2D检测器不是本文的重点。为了保持整体回顾和介绍3D目标检测方法的完整性,我们提及了这些方法。在这里,我们介绍了2D目标检测技术的主要进展和里程碑,如图1所示。然而,随着机器人视觉和自动驾驶等新的应用场景的提出,2D目标检测的实现还远远不够。由摄像机捕获的图像的处理过程将3D空间投影到2D视图中,这导致了3D空间信息的丢失,并且无法满足人们的需求。需要考虑更多的3D空间信息。随着许多3D技术的快速发展,大量的3D传感器如激光雷达、3D扫描仪和RGB-D相机变得越来越多并且价格逐渐合理。在本文中,我们主要分析通过使用激光雷达获得的点云。作为一种常见格式,每个点提供给我们有用的几何位置信息,有些可能包含RGB信息。在自动驾驶领域,对3D对象检测和跟踪的需求迫在眉睫。在自动驾驶研究中,准确的环境感知和精确的定位是实现可靠导航、信息决策和在复杂动态环境中安全驾驶的关键。与受照明影响的图像数据质量不同,点云对不同的光照条件具有较强的鲁棒性。因此,在这一领域广泛使用点云数据。基于2D目标检测,目标检测的问题和需求发生了变化。由于点云的稀疏性和不规则性,不可能将2D目标检测方法应用于3D点云。因此,需要改变2D目标检测方法,以确保这些方法能够扩展到3D情况。与应用于图像的目标检测方法类似,这些3D目标检测方法仍然可以分为两类:两阶段方法和一阶段方法。

3002e6a865bbfa1449e52ba5a683f10e.png

4. 背景

为了帮助理解现代深度学习技术如何应用于解决3D目标检测问题,本节描述了研究对象和数据的一些简单概念。

c38dbff37b1db547cb9415d227ced94b.png

4.1. 问题

3D目标检测问题与2D检测类似,可以表述如下。给定一些点云数据,一个3D检测器需要确定是否存在预定义类别的实例,如果是,则确定它们的位置。首先要考虑的是这些预定义类别,这取决于具体的问题。考虑到自动驾驶的情况,研究界更关注那些交通参与者(例如,自行车、汽车和行人)。通常,像天空和云等无结构场景通常不是我们研究的对象。一般情况下,用3D边界框来表示这些3D对象的位置。它是一个放置在3D空间中的长方体,通常有三种表示方法,例如轴对齐的3D中心偏移方法、8个角点方法和4个角点2个高度方法。总的来说,3D目标检测的最终结果是使用3D边界框来标记3D对象。

4.2. 主要挑战

通用目标检测方法旨在识别和定位感兴趣的对象类别。在大多数计算机视觉问题中,人们主要关注准确性和效率。目标检测也不例外。从激光雷达、深度相机和双目摄像头获得的点云数据可以用于3D目标检测。然而,随着物体与相机之间距离的增加,点云的密度会突然下降,造成密度的巨大变化。更重要的是,由于遮挡,一些物体的部分可能是不可见的,这导致同一物体的点云分布存在较大滞后。综上所述,点云的表示方式非常不同,对于检测器来说很难做出相当准确的检测。另一个需要注意的点是点云的稀疏性和不规则性。同一物体的这些点的顺序受不同采集设备和不同坐标系的影响很大。这些不规则的云点使得端到端模型很难处理。此外,与场景的大尺度相比,激光雷达采样点的覆盖率具有很强的稀疏性。众所周知,随着人工智能的快速发展,深度神经网络在自动驾驶的大多数任务中被广泛使用,因为它们具有高准确性和强鲁棒性。在2D目标检测领域使用的深度神经网络的性能比其他类型的算法要好得多。然而,我们刚刚提到的点云的特性导致这些深度学习方法的效能降低。这就是为什么基于深度学习的3D目标检测研究进展缓慢的原因。因此,在数据预处理阶段,如何表示稀疏点云数据以更好地利用它值得彻底研究。尽管点云具有深度和空间信息等有用信息,但有时似乎同时利用图像数据效果更好。因此,一些结合激光雷达点云和图像的方法得到了很好的发展。在本文中,我们主要讨论点云的深度学习方法。为了使本文完整,还将包括一些使用2D图像的融合方法。

4.3 动机

本文提到的相关方法根据它们不同的算法执行过程进行组织。换句话说,我们主要关注检测器是否首先生成提议。本文旨在调查针对点云的3D目标检测的最新研究,并对这些方法进行分类,综合总结基于深度学习技术的点云的最新进展。它还涵盖了不同方法的比较优缺点,通过观察那些仍未解决的问题来激发更多未来可能的研究方向。

5. 方法

a1bb8e2fe0ee883b1b9d9524533bbf1c.png

5.1 双阶段方法

两阶段方法是一种常用的3D目标检测方法,首先检测可能包含对象的一些区域(也称为提议),然后对提取的特征进行预测。根据文献的介绍,我们进一步将这些两阶段方法分为三类:i)基于多视图的方法;ii)基于分割的方法;iii)基于截锥体的方法。

  • 基于多视图的方法

这类方法试图利用不同的模态来提高性能。由于点云中不包含纹理信息,而单眼图像无法提供准确的3D定位和尺寸估计所需的深度信息,因此多视图方法尝试使用不同的模态来提高性能。通过深度融合,结合来自多个视图(如鸟瞰图(BEV)、激光雷达前视图(FV)和图像)的区域特征,获得定向的3D框。Chen等人提出的多视图3D目标检测网络(MV3D)是一个显著的工作。他们的MV3D由两个子网络组成:一个是用于生成3D提议的3D提议网络,另一个子网络是一个深度融合网络,其主要功能是尝试融合多视图特征提议。他们使用3D提议并将其投影到三个视图。在实验中,基于激光雷达的方法在KITTI验证集上的IoU为0.5时实现了87.65%的平均精度,比VeloFCN高出30%。尽管如此,该模型并不完美,因为检测过程的整个过程太慢,无法实际应用。为了改进MV3D模型,已经做出了一些努力。通过应用不同的模态来提高信息融合的效率。Ku等人提出了一种聚合视图对象检测网络(AVOD),它使用了激光雷达点云和RGB图像。与MV3D不同的是,它将ROI特征融合扩展到了提议生成阶段。他们的RPN具有新颖的架构,具有在高分辨率特征图上完成多模态特征融合的能力,因此便于为场景中的微小对象生成准确的区域提议。此外,他们在KITTI对象检测基准测试上测试了AVOD的性能,结果显示AVOD可以实时运行并且内存开销低。然而,ROI特征融合局限于高级别特征图。此外,只有从选择的对象区域中提取的特征才会被融合。ContFuse 的开发旨在克服这些缺点。他们利用连续卷积来融合不同分辨率的特征图。通过激光雷达点图像的投影和BEV空间可以相互对应。换句话说,在BEV空间中,可以提取每个点的图像特征,并且将图像特征投影到BEV平面可以获得密集的BEV特征图。然而,极度稀疏的点云限制了这种融合的范围。Liang等人提出了一种用于多任务的对象检测网络(例如,3D对象检测、地面估计和深度完成)的对象检测网络。这篇论文利用了逐点和ROI特征融合的优点。具体地,多任务的实现有助于整个网络学习更好的表示。因此,KITTI和TOR4D数据集被用于验证这种方法,证明了它在检测问题上取得了出色的改进,并在过去的最先进方法中表现出色。改进的另一个方向是探索如何提取稳健的输入表示。提出了一种新颖的空间通道关注网络(SCANet),旨在实现高精度的3D目标检测。在这篇论文中,他们提出了一个全新的空间通道注意(SCA)模块和一个扩展空间上采样(ESU)模块用于3D区域提议使用。前者可以聚焦于场景中的全局和多尺度上下文,并且可以捕获那些区分性特征。后者结合了不同尺度的低级特征,并产生可靠的3D区域提议。此外,更好地融合这些特征的方法是应用一种新的多级融合方案,允许它们之间进行更多的交互。最后,实验结果表明,在11.1 FPS的速度下,他们的方法比MV3D快5倍。

  • 基于分割的方法

这种方法通常对语义分割进行初步处理,即使用语义分割技术从背景点中提取出前景点,从而有助于从前景点生成高质量的提议。其中一个典型的基于分割的网络是在图4b中展示的。此外,与上述多视图方法相比,基于分割的方法获得了更高的召回率,并且可以应用于具有大量遮挡和拥挤对象的复杂场景。要介绍的第一种方法是在提出的。这种名为IPOD的方法首先对图像进行语义分割,并生成基于点的提议。在正面点上生成提议的准确性仍然很高。此外,还考虑了一些可能的问题,例如提议的冗余性和歧义性。这篇论文提出了一个名为PointsIoU的新标准来解决这些问题。实验结果肯定表明,这个模型比许多3D检测方法更好,特别是对于高遮挡的场景。我们回顾中另一个经典的基于分割的网络是由Shi等人提出的PointRCNN 。该网络首先通过分割技术生成3D提议,然后在第二阶段对这些提议进行细化以获得最终的检测结果。与IPOD不同,PointRCNN直接对点云进行分割以生成高质量的提议,而不是应用2D对象分割。该网络的一个重要模块是基于箱的3D边界框生成,这些箱是从前景点中回归出来的。该模块采用了基于箱的方法,而不是使用L1或L2损失进行回归,即首先将每个前景点分成不同的箱,然后在每个箱之间回归框。这项工作实现了3D空间中的RPN。从PointRCNN的RPN阶段汲取经验,Jesus等人提出了一个名为PointRGCN的基于图的3D检测管道,利用了GCN的进展,包括两个子网络R-GCN和C-GCN。RGCN是一个残差GCN,通过使用提议中的所有点来实现预提议特征聚合。C-GCN是一个上下文GCN,其主要功能是通过不同提议之间的共享上下文信息来细化提议。Sourabh等人提出了PointPainting,通过将激光雷达点投影到基于图像的语义分割网络的输出中,并将类分数附加到每个点上。这些附加的点可以被馈送到任何现有的仅激光雷达检测器,例如我们之前提到的PointRCNN。他们的工作填补了不同传感器提供的全面信息对于基于融合的方法是有益的这一空白,但是主要基准数据集上的实验结果表明,在大多数情况下,仅激光雷达方法的性能优于融合方法。

  • 基于截锥体的方法

这些方法利用成熟的2D对象检测器和先进的3D深度学习进行对象定位。它们首先生成2D对象区域提议,然后通过将2D边界框提升到包含对象的3D截锥体中,为对象的3D搜索空间生成3D截锥提议。截锥体方法的一个具体过程如图4c所示。当然,值得注意的是,尽管在提出可能的3D对象区域方面效率很高,但是这种逐步的流水线使得极大地依赖于2D图像检测器。Qi等人在这方面做出了开创性的工作。他们提出了一种基于RGB-D数据的新框架,名为Frustum PointNets 用于3D目标检测。在他们的工作中,模型首先将RGB图像馈送到卷积神经网络中以获得2D提议,然后结合深度信息将区域投影到截锥体中。这是获得截锥提议的过程。对于包含在截锥体中的那些点,将执行3D实例分割。基于分割的结果,轻量级回归PointNet尝试调整这些点,使其质心接近无模态框中心。最后,3D框估计网络估计那些3D无模态边界框。令人惊讶的是,F-PointNets具有使用少量点正确预测姿态正确的3D框的能力。然而,仍然存在一些问题,比如在同一类别的多个实例的情况下无法正常工作。继F-PointNets的工作之后,Zhao等人提出了一种称为SIFRNet 的新的网络架构,依赖于前视图图像和截锥体点云来预测3D检测结果。整个网络主要由三部分组成:i)3D实例分割网络(Point-UNet);ii)T-Net;iii)3D框估计网络(Point-SENet)。它们有助于改善3D分割的性能和3D边界框预测的效率。PointSIFT模块集成到他们的网络中,捕获点云的方向信息,并对形状缩放具有很强的鲁棒性。一系列实验表明,与F-PointNets相比,该方法在KITTI数据集和SUN-RGBD数据集上取得了更好的性能。徐等人提出了一种称为PointFusion 的通用3D目标检测方法。为了处理各种RGB图像和点云数据的组合挑战,先前的方法通常会转换点云数据的形式,例如通过2D图像或体素表示点云数据。这种方法虽然方便,但会遇到一个问题,即丢失点云中包含的一些信息。相反,该方法直接通过ResNet和PointNet处理图像和3D点云。获得的2D图像区域及其相关截锥体点用于精确回归3D框。他们提出了一个全局融合网络,用于直接获得3D框角位置。同时,还有一个新的密集融合网络,用于预测空间偏移并选择具有最高分数的最终预测结果。值得注意的是,王等人提出了一种称为截锥体ConvNet的新方法,该方法首先为每个提议生成一串截锥体,并利用获得的截锥体对这些点进行分组。我们之前提到的F-PointNet也直接在原始点云上工作,但由于其T-Net对齐,它并未被设计为端到端流水线,该方法考虑了这一因素,并被设计为结合前几项工作的几个优点。已经证明,这种新颖的端到端风格的用于无模态3D目标检测的F-ConvNet方法在KITTI数据集上达到了2D检测器的最先进性能,并且有助于大量应用,如自动驾驶。两阶段方法包括高精度的目标检测等几个优点。但是,由于生成包含预定义对象的区域的过程,这种对象检测过程的速度将会降低。

e0505412d52fbe3a6d9e0bcc6ab0e43e.png

5.2 单阶段方法

单阶段方法是指直接在单个步骤中完成对象检测的算法,而不需要使用区域提议网络(RPN)或后处理步骤。相比之下,两阶段方法通常需要先生成候选区域,然后再对这些区域进行分类和边界框回归。一阶段方法的优势在于速度较快,适用于实时系统。

  • 基于BEV的方法

这类方法使用鸟瞰图(BEV)表示作为输入。BEV图具有几个优点,包括对象大小与原始大小相同、避免遮挡问题以及对自动驾驶应用的重要性。一个典型的例子是PIXOR,它是一种无需提议的一阶段方法,通过BEV表示原始3D数据,并利用全卷积网络进行密集3D物体检测。后续研究表明,结合高清晰度(HD)地图可以进一步提高性能和鲁棒性。

  • 基于离散化的方法

这类方法将原始点云数据转换为常规的离散格式,如2D地图,然后使用深度神经网络进行分类和边界框回归。一个典型的例子是将点云转换为2D点地图,并使用全卷积网络进行物体检测。这种方法相对于两阶段方法来说,提供了更快的处理速度,但由于3D卷积和数据稀疏性,计算成本较高。

  • 基于点云的方法

这类方法直接将原始点云输入到网络中进行物体检测。一种新颖的方法是3DSSD,它是第一个轻量级和高效的基于点云的3D一阶段物体检测器。该方法通过融合采样策略和详细的边界框预测网络来实现高性能物体检测。

  • 其他方法

还有一些其他单阶段目标检测方法,如LaserNet,它是一种高效的概率3D物体检测模型,使用小而密集的范围视图数据作为输入。与两阶段方法相比,虽然一阶段方法可能无法实现同样高的检测精度,但它们更适用于实时检测任务。

b0c4353cdf85f1ae5a39d681e8392917.png c6d48fdacc16dfb0f42e22e346b29796.png 919fd4814cef1d2cb49d20357cfcdbd9.png

6. 总结

3D物体检测对计算机理解场景非常有帮助,并且是许多实际应用(如自动驾驶)的关键技术。在本综述中,我们列举了一些典型的最新3D物体检测方法,并将它们分类为两阶段方法和一阶段方法。前者需要首先生成一系列提议,然后预测或回归这些提取的特征。一阶段方法跳过了提议生成过程,直接预测类别概率和回归边界框。为了直观地了解这两种类型的方法如何实现物体检测,图8给出了一个简单的描述。我们还阐述了点云数据在物体检测中的优势,并列出了点云的几个公认的缺点。目前,当前流行的方法尝试引入不同类型的输入,如激光雷达点和摄像头数据。图像为我们提供了更密集的信息,但损失了3D空间信息。激光雷达点云由于其几何位置信息和深度信息适用于3D物体检测。点云的稀疏性和不规则性促使人们研究新方法来利用图像和基于激光雷达的数据的优势。根据对这些不同类型现有方法的分析,以下问题需要进一步研究:

  • 首先,由于数据的规则表示,那些成熟的2D图像处理网络可以极大地应用于基于投影的技术和基于离散化的技术。然而,在将3D数据投影到2D格式过程中不可避免地会丢失一些有用信息,这对于基于投影的方法来说是一个很大的限制。对于基于离散化的方法,随着分辨率的增加导致的计算量呈指数级增长和巨大的内存成本是主要瓶颈。考虑到以上问题,基于索引结构构建稀疏卷积层可能是对这些问题的可行解决方案,并值得进一步研究。

  • 目前,基于点云的模型是人们最关注的流行方法。然而,由于点云的稀疏性和不规则性,点表示通常缺乏清晰的邻域信息。许多现有的基于点云的方法使用昂贵的最近邻搜索技术,例如KNN。这些方法的低效性需要更高效的方法。最近提出的点-体素组合表示方法可以成为进一步研究的可能方向。大多数现有的3D点云物体检测方法都是针对小规模点云进行的。然而,由于数据获取过程是连续的,激光雷达获取的点云数据非常庞大和大规模。因此,迫切需要进一步研究以解决这些大规模点云的问题。

  • 许多研究人员已经开始从动态点云中学习时空信息。时空信息有望帮助提高许多后续任务的性能,如3D物体分割、物体识别和补全。

004a0a271115d867913174bccc0714ed.png

本文仅做学术分享,如有侵权,请联系删文。

3D视觉工坊交流群

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉大模型工业3D视觉SLAM自动驾驶三维重建无人机等方向,细分群包括:

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

大模型:NLP、CV、ASR、生成对抗大模型、强化学习大模型、对话大模型等

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

除了这些,还有求职硬件选型视觉产品落地最新论文3D视觉最新产品3D视觉行业新闻等交流群

添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

70588fa05ca697c458171b17aaf10e15.png
▲长按扫码添加助理
3D视觉工坊知识星球

3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

c32d7d1ea51a55fd8bf44893749c3e67.jpeg
▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪,无人机等

17f4e4fc389aa2e95d436842beb30e56.jpeg
▲长按扫码学习3D视觉精品课程
3D视觉相关硬件
图片说明名称
74467507385c80bb9273fa0f0b1f204f.png硬件+源码+视频教程精迅V1(科研级))单目/双目3D结构光扫描仪
4b45f025a5c5887e40b311378aaf51c7.png硬件+源码+视频教程深迅V13D线结构光三维扫描仪
d414fb09027de0867ae09c8455b574c7.jpeg硬件+源码+视频教程御风250无人机(基于PX4)
9916dd63892d0f3429b3d72f8e02b870.png硬件+源码工坊智能ROS小车
f8ee4b77dbfe8a5b27be6766a271118f.png配套标定源码高精度标定板(玻璃or大理石)
添加微信:cv3d007或者QYong2014 咨询更多
—   —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

outside_default.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值