总结10个顶会开源的轻量级视觉惯性SLAM!(上)

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。

扫描下方二维码,加入「3D视觉从入门到精通」知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

2e0cddb212e7cbc4f3ca968ce0fe3c0d.jpeg

3D视觉工坊为您网罗最新的行业动态、学术论文、科研成果、产品发布、新闻政策!

1. 动态环境下资源受限机器人的RGB-D惯性里程计

标题:RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments

作者:Jianheng Liu, Xuanfu Li, Yueqian Liu, Haoyao Chen

机构:Harbin Institute of Technology Shenzhen

来源:RAL

原文链接:https://arxiv.org/abs/2304.10987

代码链接:https://github.com/HITSZ-NRSL/Dynamic-VINS

摘要:当前的同步定位与地图创建(SLAM)算法在静态环境中表现良好,但在动态环境中容易失效。最近的工作将基于深度学习的语义信息引入SLAM系统,以减少动态对象的影响。然而,对于资源受限的机器人来说,在动态环境中实现鲁棒的定位仍然是一个挑战。提出了一种用于动态环境下资源受限机器人的实时RGB-D惯性里程计系统,称为动态VINS。三个主要线程并行运行:对象检测、特征跟踪和状态优化。所提出的动态VINS结合了对象检测和深度信息用于动态特征识别,并且实现了与语义分割相当的性能。动态VINS采用基于网格的特征检测,提出了一种快速有效的方法来提取高质量的快速特征点。IMU用于预测运动,进行特征跟踪和运动一致性检查。所提出的方法在公共数据集和真实世界的应用上进行评估,并在动态环境中显示出有竞争力的定位精度和鲁棒性。然而,据我们所知,这是目前在动态环境下资源受限平台上性能最好的实时RGB-D惯性里程计。

5d9f08f12d9eccf63cd3b7860aa29dc8.png

2. EAO-SLAM:基于集合数据关联的单目半稠密目标SLAM

标题:EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association

作者:Yanmin Wu, Yunzhou Zhang, Delong Zhu, Yonghui Feng, Sonya Coleman, Dermot Kerr

机构:Northeastern University、The Chinese University of Hong Kong、Ulster University

来源:IROS

原文链接:https://arxiv.org/abs/2004.12730

代码链接:https://github.com/yanmin-wu/EAO-SLAM

摘要:对象级的数据关联和姿态估计在语义SLAM中起着重要的作用,但由于缺乏鲁棒和精确的算法,这两个问题一直没有得到解决。在这项工作中,我们提出了一个集成数据关联策略来整合参数和非参数统计检验。通过利用不同统计量的性质,我们的方法可以有效地聚合不同测量值的信息,从而显著提高数据关联的鲁棒性和准确性。然后,我们提出了一个精确的目标姿态估计框架,其中一个离群点鲁棒质心和尺度估计算法和一个目标姿态初始化算法被开发,以帮助提高姿态估计结果的最优性。此外,我们建立了一个SLAM系统,可以用单目相机生成半密集或轻量级的面向对象的地图。在三个公开可用的数据集和一个真实场景上进行了广泛的实验。结果表明,我们的方法在准确性和鲁棒性方面明显优于最先进的技术。

a1101f0025acaf53001680a186c5963e.png

3. RDS-SLAM:使用语义分割方法的实时动态SLAM

标题:RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods

作者:YUBAO LIU、JUN MIURA

机构:Toyohashi University of Technology

来源:Access

原文链接:https://ieeexplore.ieee.org/document/9318990

代码链接:https://github.com/yubaoliu/RDS-SLAM

摘要:场景刚性是典型视觉同步定位与地图构建(vSLAM)算法中的一个强假设。这一强假设限制了大多数vSLAM在动态现实环境中的应用,而这些动态现实环境正是增强现实、语义地图构建、无人自动驾驶车辆和服务型机器人等相关应用的目标场景。已有多种解决方案被提出,这些方案采用不同的语义分割方法(例如Mask R-CNN、SegNet)来检测动态物体并去除离群点。然而,据我们所知,这类方法在其架构中等待跟踪线程中的语义结果,其处理时间取决于所使用的分割方法。在本文中,我们提出了RDS-SLAM,这是一种基于ORB-SLAM3的实时视觉动态SLAM算法,通过增加一个语义线程和一个基于语义的优化线程,实现了在动态环境中进行实时鲁棒跟踪与地图构建。这两个新颖的线程与其他线程并行运行,因此跟踪线程无需再等待语义信息。此外,我们提出了一种算法,以尽可能获取最新的语义信息,从而能够统一地使用不同速度的分割方法。我们使用保存在地图中的移动概率来更新和传播语义信息,并通过数据关联算法使用这些信息从跟踪中去除离群点。最后,我们使用公开的TUM RGB-D数据集和Kinect相机在动态室内场景中对跟踪精度和实时性能进行了评估。

a3238e9fe025feb0e18f5f118dd9b45b.png

4. Snake-SLAM:采用解耦非线性优化的高效全局视觉惯性SLAM

标题:Snake-SLAM: Efficient Global Visual Inertial SLAM using Decoupled Nonlinear Optimization

作者:Darius R¨uckert、Marc Stamminger

机构:University of Erlangen-Nurenberg

来源:ICUAS

原文链接:https://ieeexplore.ieee.org/document/9476760/

摘要:Snake-SLAM是一种可扩展的视觉惯性SLAM系统,用于低功率航空设备中的自主导航。跟踪前端具有地图重用、闭环、重新定位功能,并支持单目、立体和RGBD输入。通过基于图形的简化方法减少关键帧,并使用新颖的延迟映射阶段进一步细化,以确保稀疏而精确的全局映射。优化后端将IMU状态估计与视觉光束法平差解耦,并在两个简化的子问题中分别求解。这大大降低了计算复杂度,并允许Snake-SLAM使用比现有SLAM方法更大的局部窗口大小。我们的系统实现了一种新颖的多级VI初始化方案,该方案使用陀螺仪数据来检测视觉异常值,并恢复度量速度、重力和尺度。我们在EuRoC数据集上对Snake-SLAM进行了评估,结果表明它在效率上优于所有其他方法,同时还实现了最先进的跟踪精度。

a31079a2b5f046b30eb9aca6f7582c73.png

5. 具有闭式零速更新的轻量级混合视觉-惯性里程计

标题:Lightweight hybrid visual-inertial odometry with closed-form zero velocity update

作者:QIU Xiaochen、ZHANG Hai、FU Wenxing

机构:Beihang University、Science and Technology on Aircraft Control Laboratory、Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory

原文链接:https://www.sciencedirect.com/science/article/pii/S1000936120301722

代码链接:https://github.com/PetWorm/LARVIO

摘要:视觉-惯性里程计(VIO)通过融合来自相机和惯性测量单元(IMU)的测量数据,实现了比单独使用任一传感器更佳的累积性能。混合VIO是一种基于扩展卡尔曼滤波的解决方案,它将具有较长跟踪长度的特征增广到多状态约束卡尔曼滤波(MSCKF)的状态向量中。本文提出了一种新颖的混合VIO方法,该方法在利用低成本传感器的同时,也考虑了计算效率和定位精度。所提算法具有以下几项创新贡献。首先,通过推导解析误差传递方程,采用一维逆深度参数化对增广特征状态进行参数化。这一改进显著提高了计算效率和数值鲁棒性,从而实现了更高的精度。其次,为了更好地处理静态场景,提出了一种新颖的闭式零速更新(ZUPT)方法。ZUPT被建模为滤波器的测量更新,而不是粗暴地禁止传播,其优点是通过滤波器协方差矩阵中的相关性来校正整体状态。此外,还融入了在线空间和时间校准。本文在公开数据集和真实数据上进行了实验。结果表明,所提方案在效率和精度方面均优于基线方法和当前最先进算法,验证了其有效性。相关软件已开源,以惠及社区。

5330cec11f2c6d3da5d5c5d4de0d8195.png

本文仅做学术分享,如有侵权,请联系删文。

c306c8673f559cf9eaf815a0097411cd.png

3D视觉交流群,成立啦!

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

最前沿:具身智能、大模型、Mamba、扩散模型等

除了这些,还有求职硬件选型视觉产品落地、产品、行业新闻等交流群

添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

0261b2314695fe2f5ad7ff48b1315d42.jpeg
▲长按扫码添加助理:cv3d001
3D视觉工坊知识星球

「3D视觉从入门到精通」知识星球,已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

ace6eb6a6721e3c8889ed315fee7905b.jpeg

▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

具身智能、3DGS、NeRF结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真C++、三维视觉python、dToF、相机标定、ROS2机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

7014cc9d37eb0e1302c22b7d64d8ffa0.jpeg
▲ 长按扫码学习3D视觉精品课程
3D视觉模组选型:www.3dcver.com

0500eb986683c4ba038e9f23f6bda2a3.png

—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值