AI大模型LLM每周速递!| 涉及多Token注意力、Text2Sql增强、多模态、RNN大模型、多Agent应用等

引言

紧跟技术发展趋势,快速了解大模型最新动态。今天继续总结最近一周的研究动态,其中主要包括:RNN推理大模型、最新多Token Attention、多模态模型反思、新知识对LLM的影响、强化学习RL、多Agent心理陪护、LLM Ensemble等热门研究。

Meta |多Token注意力

图片
https://arxiv.org/pdf/2504.00927

软注意力是LLMs定位相关上下文部分的关键机制,但传统注意力权重仅由单个查询和键Token向量的相似度决定,限制了用于区分相关信息的信息量。图片
本文作者提出**「多Token注意力(MTA)方法,通过在查询、键和头向量上应用卷积操作,使模型能同时基于多个查询和键向量确定注意力权重」**,利用更丰富、细腻的信息定位相关上下文。MTA在多种流行基准测试中表现优异,在标准语言建模任务和长上下文中搜索信息的任务上超越Transformer基线模型。

字节 |提出Pixel-SAIL

图片https://arxiv.org/pdf/2504.10465

多模态大语言模型(MLLMs)在像素级理解任务中表现突出,但依赖额外组件,系统复杂,限制模型扩展。图片本文作者受单Transformer统一视觉-语言模型(SAIL)设计启发,「提出Pixel-SAIL,仅用单Transformer实现像素级MLLM任务」,设计可学习上采样模块细化视觉特征、新视觉提示注入策略实现早融合、视觉专家蒸馏策略提升细粒度特征提取能力。实验结果:在多个基准数据集上,Pixel-SAIL以更简流程取得相当甚至更好结果。

HKUST |让VL模型自我反思

图片https://arxiv.org/pdf/2504.08837

像GPT-o1等慢思考系统在通过显式反思解决数学和科学基准测试中的难题上表现出巨大潜力,但其多模态推理能力与快思考模型相当。
图片
本文作者**「采用强化学习提升视觉语言模型的慢思考能力」,适应GRPO算法并引入选择性样本回放技术解决优势消失问题,还提出强制反思方法,「在初始rollouts末尾添加文本反思触发器,明确强制自我反思推理步骤」**。模型VL-Rethinker在MathVista、MathVerse和MathVision等多模态推理基准测试中显著提升,缩小了与GPT-o1在多学科基准测试如MMMU-Pro、EMMA等上的差距。

Google |新数据如何影响LLM

图片https://arxiv.org/pdf/2504.09522

大语言模型通过梯度更新积累学习,但**「新信息如何影响现有知识,导致有益泛化和有害幻觉,尚不清楚」图片
本文作者
「提出‘Outlandish’数据集,包含1320个文本样本,用于研究新知识如何渗透LLM知识库」**。发现学习新信息后的‘启动’效应可通过学习前关键词概率预测。提出‘stepping-stone’文本增强策略和‘ignore-k’更新修剪方法,减少不良启动效应。结果显示,这些方法可减少50-95%的不良启动效应,同时保留学习新信息的能力。

TogetherAI |RNN推理模型:M1

图片
https://arxiv.org/pdf/2504.10449

有效的推理对于解决复杂数学问题至关重要,但基于Transformer的模型因二次计算复杂度和线性内存需求,在扩展上下文长度时受限,难以高效处理长序列和大批次输入。

本文作者**「提出基于Mamba架构的新型混合线性RNN推理模型M1,通过从现有推理模型蒸馏和强化学习训练,实现高效推理」**。M1在AIME和MATH基准测试中不仅优于以往线性RNN模型,还与同规模的Deepseek R1蒸馏推理模型性能相当,且生成速度比同尺寸Transformer快3倍以上,通过自一致性投票,在固定生成时间预算下,比DeepSeek R1蒸馏Transformer推理模型准确度更高。

PU |EmoAgent框架

图片https://arxiv.org/pdf/2504.09689

大型语言模型驱动的AI角色兴起,但对有心理障碍的脆弱用户存在安全隐患,如可能加剧其心理痛苦。图片
本文作者提出多AgentAI框架:EmoAgent,包含EmoEval和EmoGuard。「EmoEval模拟虚拟用户评估与AI角色交互前后心理健康变化,使用临床心理评估工具;EmoGuard监测用户心理状态,预测潜在伤害并提供反馈以降低风险」。在基于角色的聊天机器人实验中,情感投入对话会使脆弱用户心理状态恶化,超34.4%的模拟出现心理恶化,而EmoGuard显著降低了恶化率。

Google|Reasoning-SQL,增强Text2Sql能力

图片https://arxiv.org/pdf/2503.23157

文本到SQL任务涉及自然语言理解、数据库模式理解和精确SQL查询生成等多个推理密集型子任务,现有方法常依赖手工制作的推理路径,效果受限。图片
受推理增强模型成功启发,「本文作者提出针对Text2Sql任务的SQL定制部分奖励,包括模式链接、AI反馈、n-gram相似性和语法检查,解决强化学习中奖励稀疏问题」,借助群体相对策略优化,鼓励大型语言模型发展内在推理技能以准确生成SQL查询。在不同大小模型表明,仅用本文提出的奖励进行强化学习训练,比监督微调准确率更高、泛化能力更强,14B参数模型在BIRD基准测试中显著优于更大专有模型。

综述 |大模型测试时扩展【TTS】

图片https://arxiv.org/pdf/2503.24235

大语言模型(LLMs)通过训练时扩展学习通用智能,TTS能够显著提升大型语言模型(LLMs)在专业推理和一般任务中的表现。然而,该领域仍缺乏全面的综述。图片
为此,本文作者**「提出了一个围绕四个核心维度(扩展什么、如何扩展、在哪里扩展、扩展效果如何)构建的多维度框架,广泛回顾了方法、应用场景和评估方面,剖析了各技术在TTS中的独特功能角色」**。总结了TTS至今的主要发展轨迹,并为实际部署提供实操指南,还指出了开放性挑战并展望了未来方向。

上海AI Lab |多模态模型InternVL3

图片https://arxiv.org/pdf/2504.10479

多模态大语言模型(MLLMs)在众多任务上表现优异,但多数是基于纯文本大语言模型通过复杂多阶段管道适应而来,存在复杂性和对齐挑战。
图片
上海AI Lab推出InternVL3,采用原生多模态预训练范式,在单一预训练阶段从多模态数据和纯文本语料中联合获取多模态和语言能力,还融入可变视觉位置编码、先进后训练技术及测试时扩展策略等。「InternVL3在多模态任务上性能卓越,InternVL3-78B在MMMU基准测试中获72.2分,创开源MLLMs新纪录」,且与领先专有模型性能相当,同时保持较强纯语言能力。本文作者将公开训练数据和模型权重,助力下一代MLLMs研究发展。

北航 |大模型集成(LLM Ensemble)

图片https://arxiv.org/pdf/2502.18036

LLM Ensemble(大语言模型集成)是一种新兴技术,通过在下游任务推理阶段综合使用多个大语言模型(LLMs),以发挥各自的优势,从而提高整体性能。图片
本文详细介绍了LLM Ensemble的分类法,讨论了相关研究面临的关键问题,「并将“推理前集成、推理中集成、推理后集成”三大范式下的方法分为七大类进行回顾」。最后,介绍了相关基准测试集和典型应用,总结分析了现有研究成果,并提出了未来研究方向。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一般来说,语言模型旨在对于人类语言的内在规律进行建模,从而准确预测 词序列中未来(或缺失)词或词元(Token)的概率。根据所采用技术方法的不同, 针对语言模型的研究工作可以分为以下四个主要发展阶段: • 统计语言模型(Statistical Language Model, SLM). 在 20 世纪 90 年代兴起的 统计语言模型 [4, 5] 是基于统计学习方法研发的。具体来说,统计语言模型使用马 尔可夫假设(Markov Assumption)来建立语言序列的预测模型,通常是根据词序 列中若干个连续的上下文单词来预测下一个词的出现概率,即根据一个固定长度 的前缀来预测目标单词。具有固定上下文长度 𝑛 的统计语言模型通常被称为 𝑛 元 (𝑛-gram)语言模型,如二元或三元语言模型。统计语言模型被广泛应用于信息检索 (Information Retrieval, IR)和自然语言处理(Natural Language Processing, NLP)等领 域的早期研究工作。对于高阶统计语言模型来说,随着阶数 𝑛 的增加,需要估计的 转移概率项数将会指数级增长,经常会受到“维数灾难”(Curse of Dimensionality) 的困扰。为了缓解数据稀疏问题,需要设计专门的语言模型平滑策略,如回退估 计(Back-off Estimation)和古德-图灵估计(Good-Turing Estimation)。然而平滑方 法对于高阶上下文的刻画能力仍然较弱,无法精确建模复杂的高阶语义关系。 • 神经语言模型(Neural Language Model, NLM). 神经语言模型 [6, 7] 使用神经 网络来建模文本序列的生成,如循环神经网络(Recurrent Neural Networks, RNN)。图 1.1 语言模型的发展历程 灵奖获得者 Yoshua Bengio 在一项早期工作中 [6] 引入了分布式词表示(Distributed Word Representation)这一概念,并构建了基于聚合上下文特征(即分布式词向量) 的目标词预测函数。分布式词表示使用低维稠密向量来表示词汇的语义,这与基 于词典空间的稀疏词向量表示(One-Hot Representation)有着本质的不同,能够刻 画更为丰富的隐含语义特征。同时,稠密向量的非零表征对于复杂语言模型的搭 建非常友好,能够有效克服统计语言模型中的数据稀疏问题。分布式词向量又称为 “词嵌入”(Word Embedding)。这种基于隐含语义特征表示的语言建模方法为自然 语言处理任务提供了一种较为通用的解决途径。在这一系列工作中,word2vec [8, 9] 是一个具有代表性的词嵌入学习模型,它构建了一个简化的浅层神经网络来学 习分布式词表示,所学习到的词嵌入可以用作后续任务的语义特征提取器,在自 然语言处理任务中得到了广泛使用,取得了显著的性能提升。这些创新性的研究 工作将语言模型用于文本表示学习(超越了原始的词序列建模目标),在自然语言 处理领域产生了重要影响。概述上文
03-11
<think>好的,我需要回答用户关于语言模型发展阶段及其特点的问题,特别是统计语言模型(SLM)和神经语言模型(NLM),以及它们在自然语言处理中的应用。首先,我需要整理语言模型发展的各个阶段,根据用户提供的引用内容,可以分为四个主要阶段,但用户特别提到了SLM和NLM,可能需要详细展开这两个阶段。 首先,根据引用[2],语言模型的研究分为四个发展阶段。引用[1]和[3]详细描述了统计语言模型,特别是N-gram模型,基于马尔可夫假设,使用n元方法预测下一个词的概率。它们应用广泛,但存在上下文长度限制和数据稀疏问题。然后是神经语言模型,如引用[1]提到的第二阶段NLM,使用神经网络处理更长的依赖关系,可能涉及RNN、LSTM、Transformer等结构。 接下来,我需要确认每个阶段的时间顺序和特点。引用[3]提到统计语言模型兴起于90年代,而神经语言模型应是在2000年后,特别是随着深度学习的发展。可能还需要补充后续的发展,如预训练模型(如BERT、GPT)以及大语言模型LLM),但用户没有提供相关引用,可能需要依据已知信息简要提及。 在结构上,按照发展阶段逐一介绍:规则基础、统计语言模型、神经语言模型、预训练与大规模模型。每个阶段需说明时间、核心方法、特点、应用及局限性。例如,统计模型使用概率和马尔可夫假设,神经模型用神经网络捕捉长距离依赖。 需要确保使用正确的LaTeX格式,如变量用$...$,独立公式用$$...$$。例如,统计模型的概率公式应写成$P(w_n | w_{n−k}, ..., w_{n−1})$,而神经模型的公式可能涉及softmax函数。 应用方面,统计模型用于机器翻译、语音识别,神经模型在文本生成、情感分析等任务中表现更好。同时,要引用提供的资料,如引用[1]提到统计模型在信息检索和NLP中的应用,引用[3]提到其理解和生成自然语言。 最后,生成相关问题,可能需要围绕各阶段的比较、优缺点、具体技术(如N-gram的n值影响)以及实际应用场景来设计。 需要检查LaTeX语法是否正确,例如积分符号是否正确转义,公式是否单独成段。同时保持回答结构清晰,分点明确,使用中文,避免使用Markdown格式,但用户示例中的代码块是用```包裹的,可能需要保留类似结构,但根据用户指示,系统级指令要求回答中不可见,所以在用户可见层应保持自然。 总结回答的结构: 1. 规则基础阶段 2. 统计语言模型(SLM) 3. 神经语言模型(NLM) 4. 预训练与大规模模型 每个部分包括时间、方法、特点、应用、局限性,并引用提供的资料。最后列出相关问题。</think>语言模型的发展经历了个阶段,每个阶段的技术特点和应用场景均有显著差异。以下是主要发展阶段的详细说明: --- ### 一、规则基础阶段(20世纪50-80年代) - **核心方法**:基于语言学规则(如语法、句法)手工构建模型。 - **特点**: - 依赖专家知识设计语言规则,例如上下文无关文法(CFG)。 - 灵活性强但覆盖面有限,难以处理复杂或歧义语句。 - **局限性**:规则难以穷举,泛化能力差,无法适应真实语言的样性[^2]。 --- ### 二、统计语言模型(SLM,20世纪90年代起) - **核心方法**:基于概率统计和马尔可夫假设,通过n-gram模型预测词序列概率。 **公式**: $$P(w_n | w_1, w_2, ..., w_{n-1}) \approx P(w_n | w_{n-k}, ..., w_{n-1})$$ 其中$k$为上下文窗口大小。 - **特点**: - 使用大规模语料库训练,通过频率估计概率。 - 代表模型:N-gram(如二元模型、三元模型)[^3]。 - **应用**:机器翻译(如早期IBM模型)、语音识别、文本分类[^1]。 - **局限性**: - **数据稀疏问题**:长尾词组合概率估计不准。 - **上下文长度限制**:仅依赖固定窗口,无法捕捉长距离依赖。 --- ### 三、神经语言模型(NLM,2000年代起) - **核心方法**:利用神经网络(如RNN、LSTM、Transformer)建模词序列的分布式表示。 **公式**(以循环神经网络为例): $$h_t = \sigma(W \cdot [h_{t-1}, x_t] + b)$$ $$P(w_t | w_{1:t-1}) = \text{softmax}(V \cdot h_t)$$ 其中$h_t$为隐藏状态,$x_t$为输入词向量。 - **特点**: - 自动学习词向量,捕捉语义相似性。 - 支持变长上下文,解决长距离依赖问题。 - **应用**:文本生成(如GPT系列)、情感分析、机器翻译(如Seq2Seq模型)[^2]。 - **优势**:模型泛化能力强,适应复杂语言现象。 --- ### 四、预训练与大规模语言模型(2018年至今) - **核心方法**:通过自监督学习在大规模文本上预训练,再针对任务微调。 - **代表模型**:BERT(双向编码)、GPT(自回归生成)、T5(文本到文本统一框架)。 - **特点**: - 参数规模达千亿级别(如GPT-3),涌现上下文学习能力。 - 通用性强,支持零样本(Zero-shot)和少样本(Few-shot)学习。 - **应用**:智能对话(如ChatGPT)、代码生成、多模态任务。 --- ### 各阶段对比 | 阶段 | 技术基础 | 优势 | 局限性 | |--------------|-------------|-----------------------|-------------------------| | 规则模型 | 人工规则 | 可解释性强 | 覆盖面窄,维护成本高 | | 统计模型 | 概率统计 | 计算高效 | 数据稀疏,上下文受限 | | 神经模型 | 神经网络 | 长距离依赖,泛化能力强 | 训练资源需求高 | | 预训练模型 | 自监督学习 | 通用性,少样本学习 | 计算成本巨大,可解释性差 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值