一、大模型应用架构
这个简易的大模型应用架构使用了层次架构的样式,其中智能体作为核心服务,为上面的业务逻辑提供支持。在这样的体系中,顶层的应用程序可以通过标准化接口获取必要的能力,实现高效且灵活的开发与运维流程。
(1) 基础设施
提供了整个架构的物理和虚拟资源。包括GPU(图形处理单元)、CPU(中央处理单元)、RAM(随机存取存储器)和HDD(硬盘驱动器)。
GPU用于处理图形和并行计算任务,CPU负责通用计算任务,RAM提供快速数据访问,HDD用于存储大量数据。
(2) 模型层
包含了人工智能和机器学习的核心模型。
-
大语言模型LLM:如Llama、Qwen、GLM4、豆包、文心、星火等,这些模型用于处理自然语言处理任务,能够理解和生成文本。
-
视觉-语言模型:用于处理图像和文本的结合,实现图像识别和描述等任务。
-
语音-语言模型:用于语音识别和语音合成,将语音转换为文本或反之。
-
智能文档理解:用于解析和理解文档内容。
-
多模态检测与分割:处理多种类型的数据,如图像、文本和声音,进行特征提取和数据分割。
(3) 智能体
这一层是模型层的延伸,提供了更高级的功能,如生成、微调、提示工程和思维链。
-
检索增强的生成:结合检索和生成技术,提供更准确的信息。
-
模型微调:对预训练模型进行微调,以适应特定任务或数据集。
-
提示工程:设计和优化提示,以引导模型生成期望的输出。
-
思维链:模拟人类思考过程,逐步推理以解决问题。
-
数据抓取和控制:这些功能支持数据的收集、处理和安全访问
(4)能力层
这一层提供了各种技术能力,支持上层应用的开发。
包括文字处理、音频处理、图像处理、视频处理、代码生成、行为分析和知识图谱等。
这些能力可以被不同的应用层调用,以实现特定的功能。
(5)应用层
展示了技术如何被应用于不同的行业和领域。
-
农业:智能耕种、病虫害预防、灾害预警、产能预测。
-
工业:工艺优化、智能配方、质量检测、产线排产。
-
商业:需求预测、精准投放、智能客服、效益分析。
-
政务:违规检测、办证审核、智能案件、快速追踪。
每一层都是构建在下一层的基础上,形成了一个完整的技术栈,从基础设施到具体的行业应用。
这样的架构设计有助于实现模块化、可扩展性和灵活性,同时也能够针对不同的应用场景提供定制化的解决方案。
二、大模型架构实践
简易版本的大模型应用架构,已经阐述得非常详细。
我想小伙伴们肯定应该非常的清晰明了。那么它是如何运用在业务平台中呢?
带着这个疑问,咱们以一个实际案例来说明(以我的理解)。
以一个较为实用,并且非常火热,小伙伴们经常使用的平台为例。
比如:大模型搜索平台。
天工搜索,秘塔搜索,kimi搜索等等
传统搜索引擎和AI大模型搜索引擎在多个方面存在显著差异。
传统搜索引擎主要依赖关键词匹配和链接排名,返回的是相关网页链接,用户需要自行筛选信息,这导致搜索效率较低且容易受到广告和SEO影响。
相比之下,AI大模型搜索引擎通过深度学习和自然语言处理技术,能够更精准地理解用户的查询意图,提供更加个性化和准确的搜索结果。
AI搜索引擎不仅能够直接生成答案,还能进行多轮对话,理解上下文信息,从而提升用户的搜索体验。
- 应用层
AI搜索的应用层确实是在于智能搜索需求,它为用户呈现一个干净整洁的回答。不仅仅是整合传统搜索信息,更重要的是,通过智能化处理,我们能够解决用户在搜索过程中遇到的复杂问题,提供更加精准和高效的服务。
- 能力层
当用户在AI搜索输入了搜索问题后,那么就会通过传统的搜索引擎去进行关键词搜索。因为如果直接利用大模型爬取网页数据,这样会来不及处理。因此一般来说,都会去借助搜索引擎去获取数据,最后把大模型总结的答案回复给用户。
- 智能体
在能力层,用户输入了问题后,搜索引擎获取到大量数据,那么就需要把数据以向量化的形式,存入到知识库。之后把问题向量化,与知识库进行匹配,获取最终知识向量,传给大模型进行总结与推理。
其实就是一个RAG知识库应用。但是用户输入问题,搜索获取信息,之后信息向量化等过程可以做成一个智能体应用。
- 模型层
模型层对于AI搜索平台而言,较为重要。
一个推理能力和上下文能力很强的大模型,那么它接受的背景知识长度,以及总结能力是非常nice的,也就是不胡说八道。
- 基础设施
基础设施这个一般而言都是通用的,无非就是物理和虚拟资源。
对于AI模型搜索平台而言,它面向的用户量众多,那么需要的硬件资源就会更加大。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。