在大模型领域,LangChain和LangGraph是两个备受关注的框架,它们都旨在帮助开发者利用大型语言模型(LLM)构建应用程序,但二者在设计理念、架构、功能和适用场景等方面存在诸多区别。
一、LangChain介绍
LangChain是一个用于开发由大型语言模型驱动的应用程序的框架。它通过一系列开源构建模块、组件和第三方集成,简化了LLM应用程序生命周期的每个阶段。LangChain的核心是“链”(Chain),即将多个LLM调用和工具调用链接在一起,形成一个有序的任务序列。其架构遵循有向无环图(DAG)结构,任务按单一方向流动,不形成循环。LangChain的主要特点包括:
-
组件丰富
:提供了文档加载器、文本分割器、记忆组件等多种组件,方便开发者构建和定制应用程序。
-
易于集成
:能够与外部API、数据库等工具无缝集成,拓展了LLM的应用能力。
-
适用场景
:适合处理预定义的、顺序明确的工作流程,如数据检索、内容总结、简单问答等。
二、LangGraph介绍
LangGraph是LangChain生态系统中的一个专门库,专注于构建有状态的多智能体系统。它采用图(Graph)结构来表示任务和流程,其中节点代表操作或步骤,边表示节点之间的依赖关系。LangGraph的架构更加灵活,支持循环、回溯以及处理多样化的用户输入。其核心优势在于:
-
强大的状态管理
:拥有一个中央状态组件,确保在整个交互过程中保持上下文的连续性,这对于需要持久化上下文的复杂应用至关重要。
-
多智能体支持
:非常适合构建多个智能体相互协作的场景,如任务管理助手、虚拟助理等。
-
适用场景
:适用于需要动态、复杂交互的工作流程,如任务管理、事件驱动的监控系统等。
三、LangChain与LangGraph的区别
四、选择建议
-
选择LangChain
:如果你的应用场景具有预定义的顺序工作流程,如需要从API获取数据并进行总结的简单任务,或者你更倾向于一个直接、模块化的框架,LangChain将是不错的选择。
-
选择LangGraph
:当你的项目需要动态的、有状态的交互,例如构建一个多智能体协作的任务管理系统,或者需要在复杂的工作流程中保持持久的上下文时,LangGraph会更加适合。
总之,LangChain和LangGraph各有优势,应根据项目的具体需求和复杂程度来选择最合适的框架,以充分发挥大型语言模型的潜力,构建出高效、智能的应用程序。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。