【新手必看】零基础上手Coze搭建AI智能体,人人都能学会的新手必看实用教程

1、什么是Coze?

扣子是新一代AI应用开发平台。不管你有没有编程经验,都能轻松在上面创建各种AI应用。

在扣子平台上,借助简单易用的可视化工具,你可以不用编写代码,快速搭建各种基于大模型的AI项目,满足个人需求并实现商业价值。

比如,用Coze做AI书单号视频,涨粉20W +;或者用Coze一键批量做 中式养生AI视频,篇篇1W +

它有国内版 (www.coze.cn)和国外版(www.coze.com),满足不同地区用户的需求。

图片

2、Coze上搭建AI智能体的步骤

1. 创建智能体

进入平台后,工作空间 - 项目开发 - 创建 - 点击“创建智能体”按钮。

img

img

输入智能体名称,也可以补充智能体功能介绍,图标 可以自己上传,或用AI生成。

img

2. 设置人设与回复逻辑

在设置人设时,你需要定义智能体的角色、性格等。接着,设置回复逻辑,告诉智能体如何处理用户的输入。

img

可以直接用AI优化提示词,如图

img

3. 添加插件

插件可以让智能体调用外部API扩展能力。选择合适的插件,根据需要进行配置。

img

img

4. 设置工作流

工作流是通过可视化操作组合插件、大语言模型和代码等功能。你可以根据自己的需求,灵活地设计工作流。

工作流可以提前在资源库创建好,直接引用即可。

img

img

工作流是实现自动化任务的关键,它通过将多个节点按照一定的逻辑顺序连接起来,实现复杂任务的自动化处理。

在Coze中,开发一套工作流需要用户能够将需求逻辑厘清,并合理设计输入输出参数,以保证流程节点的灵活性。

下面是一个公众号爆文提取-改写的工作流案例

img

开始节点

设置输入参数,输入参数是一个链接,用url表示,变量类型属于string

img

对变量类型概念不懂的,可以去搜一搜,这里就不展开了。

img

插件: 公众号文章提取插件

输入链接后,需要提取文案,看Coze官方有没相关的节点功能,没有就去插件市场找相关插件。

img

搜索公众号文章提取,找到对应的插件,点击添加

img

点开插件,这里有输入参数说明,照着填就行

img

这里的入参选择开始节点输入的链接

img

大模型:改写文案

上一步提取了文案后,这一步就需要大模型去改写文案,所以选择大模型节点。

img

选择模型 - 设置技能(可选)- 输入参数(引用上一节点提取的标题和内容)- 系统提示词(改写文案的提示词) - 用户输入的内容 - 输出参数(输出改写好的文案)

img

结束节点

改写完后就是输出内容,选择在结束节点输出改写好的文章:

返回文本 - 输出变量这里输出大模型节点的输出

img

试运行

点击试运行 -输入公众号文章链接 - 运行成功

img

发布工作流

工作流运行成功 - 点击发布 (一定要发布了的工作流才能在智能体中引用)

img

5. 调试与发布

把刚创建的工作流添加在智能体里。

img

最后一步是调试你的智能体,确保一切正常运行。

然后,就可以发布你的智能体了。

img

Coze支持的发布渠道包括:

Coze平台:商店:将应用发布到扣子商店,让更多扣子开发者发现你的应用,提升应用的曝光率。模板:参与扣子运营活动,将你的获奖作品发布为模板,供其他开发者付费使用

豆包:通过与豆包平台的集成,用户可以将项目发布到豆包

小程序:支持微信小程序等平台,用户可以将应用发布到微信小程序

微信: 将 AI 项目发布到微信客服、微信服务号或微信订阅号,面向海量微信用户提供 AI 智能服务。

多维表格:通过与多维表格的集成,用户可以将项目与多维表格进行关联

API、SDK:提供API和SDK接口,用户可以通过编程的方式将项目集成到其他系统中。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 使用Coze框架搭建DeepSeek智能体 #### 创建项目结构 为了使用Coze框架构建DeepSeek智能体,首先需要创建合适的工作目录结构。这有助于保持项目的整洁有序并便于后续维护。 ```bash mkdir coze_deepseek_project cd coze_deepseek_project ``` #### 初始化环境配置 安装要的依赖库来支持Coze和DeepSeek之间的交互操作。通常情况下,这些工具包会通过Python pip命令来进行管理: ```bash pip install coze-sdk deepseek-api requests ``` #### 编写初始化脚本 编写一个名为`init.py`的文件用于设置基本参数以及连接到DeepSeek服务端接口。此部分代码负责定义API密钥和其他认证信息以便于安全访问云端资源[^1]。 ```python import os from dotenv import load_dotenv load_dotenv() DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY') COZE_AGENT_ID = "your-agent-id" ``` #### 设计Agent逻辑模块 接下来,在同一目录下建立一个新的Python源码文件叫做`agent_logic.py`。该文件包含了具体业务场景下的处理流程,例如接收输入数据、调用外部模型预测结果等核心功能实现[^2]。 ```python class AgentLogic: def __init__(self, agent_id): self.agent_id = agent_id def process_input(self, input_data): # 处理接收到的数据... pass def call_model_api(self, processed_data): headers = { 'Authorization': f'Bearer {os.environ["DEEPSEEK_API_KEY"]}', 'Content-Type': 'application/json' } response = requests.post( url='https://api.deepseek.com/v1/models/predict', json=processed_data, headers=headers ) return response.json() ``` #### 构建多智能体协作机制 利用Coze提供的通信协议设计多个独立运行但又相互配合工作的智能实体。每个个体都可以执行特定的任务并将中间成果共享给其他成员共同完成最终目标。 ```python from multiprocessing import Process, Queue def run_agent(agent_queue, result_queue): while True: task = agent_queue.get() if not task: break logic_instance = AgentLogic(COZE_AGENT_ID) output = logic_instance.process_input(task['input']) prediction_result = logic_instance.call_model_api(output) result_queue.put(prediction_result) if __name__ == '__main__': num_agents = 5 tasks_to_do = [...] # 待分配的任务列表 results_collected = [] agents_queues = [Queue() for _ in range(num_agents)] results_queue = Queue() processes = [] for i in range(num_agents): p = Process(target=run_agent, args=(agents_queues[i], results_queue)) p.start() processes.append(p) try: for idx, item in enumerate(tasks_to_do): agents_queues[idx % num_agents].put(item) for q in agents_queues: q.put(None) # 发送结束信号 for proc in processes: proc.join() while not results_queue.empty(): res = results_queue.get() results_collected.append(res) except KeyboardInterrupt: print("\nTerminating...") for q in agents_queues: q.put(None) for proc in processes: proc.terminate() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值