基于YOLOv8深度学习的施工场景工程车检测识别系统

随着建筑施工现场对自动化、智能化管理的需求不断提升,施工场景中工程车的实时检测与识别成为保障施工安全与提高作业效率的关键。本文提出了一种基于YOLOv8深度学习模型的施工场景工程车检测与识别系统,结合PyQt5图形用户界面实现人机交互界面,并提供完整的数据集、训练代码及模型部署方案。系统能够对施工现场的主要工程车辆进行实时检测与分类,包括推土机、翻斗车、挖掘机、平地机、装载机、混凝土搅拌车、移动起重机和压路机等八种类型的车辆。

我们收集并标注了包含多种施工场景的工程车数据集,确保了数据的多样性和代表性。通过YOLOv8模型对数据进行训练,优化了检测精度与计算效率,针对不同尺寸、不同角度的工程车进行了有效的定位与分类。为了实现现场的实时监控与数据交互,系统使用PyQt5构建图形用户界面,用户可以通过界面实现对检测结果的可视化展示、信息查询和数据分析。

通过实验验证,本系统在标准施工场景下的检测精度较高,且在实际应用中能够有效处理不同光照、遮挡和背景变化等问题,具备良好的鲁棒性。该系统可广泛应用于施工现场的安全管理、智能监控和无人驾驶工程车的控制系统中,具有较高的实用价值和发展潜力。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

 

项目数据

Tipps:通过搜集关于数据集为各种各样的施工场景工程车相关图像,并使用Labelimg标注工具对每张图片进行标注,分8检测类别,是’推土机’, ‘自卸卡车’, ‘挖掘机’, ‘平地机’, ‘装载机’, ‘搅拌车’, ‘移动式起重机’, ‘压路机’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Alienware M16笔记本电脑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值