工具变量模型及 Stata 具体操作步骤

目录

一、引言

二、文献综述

三、理论原理

四、实证模型

五、程序代码及解释

六、代码运行结果


一、引言

在实证研究中,我们常常面临内生性问题,即解释变量与误差项相关,这可能导致估计结果的偏差和不一致。工具变量(Instrumental Variable,简称 IV)方法是解决内生性问题的一种常用手段。本文将对工具变量模型进行文献综述,介绍其理论原理,构建实证模型,并通过 Stata 软件进行具体操作,包括稳健性检验。

二、文献综述

工具变量方法在众多学科领域的实证研究中都扮演着至关重要的角色。在经济学领域,Angrist 和 Krueger(1991)利用出生季度作为教育年限的工具变量,巧妙地解决了教育对收入影响研究中的内生性问题,为后续相关研究提供了经典范例。Card(1995)在研究教育回报率时,也采用了创新的工具变量策略,进一步丰富了工具变量在劳动经济学中的应用。

在社会学研究中,Manski(1993)探讨了工具变量在社会网络分析中的应用,为理解个体行为和社会结构之间的关系提供了新的视角。此外,So

### 获取和使用TCGA数据集 #### 下载基因组学和病理组学数据集 为了从癌症基因组图谱(TCGA)项目中下载基因组学和病理组学的数据集,可以采用多种方式。一种推荐的方法是从UCSC Xena平台进行下载[^2]。该平台提供了直观的界面来浏览、查询以及下载来自TCGA项目的各种类型的数据。 对于希望获得更详细的控制权的研究员来说,还可以考虑通过官方提供的API接口或者命令行工具如`TCGAbiolinks`来进行自动化批量处理操作[^4]。这些工具能够帮助用户更加高效地检索并获取所需的具体样本及其对应的临床息和其他辅助资料。 #### 对应关系建立 当涉及到将不同类型的omics数据关联在一起时,比如要使基因表达水平与组织切片图像相匹配,则需要注意确保所选样品之间存在一致性和可比较性。通常情况下,在TCGA数据库内每一份病例都会有一个唯一的标识符(barcode),这个编号可用于追踪同一个病的多个层面的息记录[^1]。因此,在提取两部分或多部分数据之前应当确认它们属于同一份样本,并依据此唯一码作为连接键实现跨表联合分析。 #### 处理注意事项 值得注意的是,在解析RNA-seq原始计数或是其他形式测序产出的结果前,可能还需要额外准备一些资源文件用于后续步骤中的映射工作。例如,如果打算把探针ID转换成标准的Ensembl Gene ID或者其他通用命名体系下的名称的话,那么就需要事先准备好相应的注释表格,像`encode.v22.annotation.gene.probeMap`这样的文档就非常有用处。另外,选择合适的参考序列版本也至关重要,因为不同的gencode GTF版本可能会引起识别上的差异从而影响最终统计效果[^3]。 ```r library(TCGAbiolinks) # 设置参数 query <- GDCquery(project = "TCGA-BRCA", data.category = c("Transcriptome Profiling"), experimental.strategy = "RNA-Seq") # 执行查询并下载数据 GDCdownload(query) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值