Ollama 和 vLLM 的核心对比总结

在这里插入图片描述
以下是 OllamavLLM 的核心对比总结,基于上图内容提炼:


核心定位差异

工具设计目标适用场景用户群体
Ollama轻量本地化部署,降低使用门槛开发测试、个人设备/小规模服务个人开发者、小团队
vLLM高性能推理与分布式扩展高并发API服务、多GPU集群中大型企业团队

性能对比

指标OllamavLLM
吞吐量(tokens/s)≈1000≥5000
并发能力(QPS)≤10≥1000

选择建议

  • Ollama:适合本地快速验证模型、个人学习或轻量级场景,优势是低配置启动(如单机CPU/低显存GPU)。
  • vLLM:适合企业级高并发需求(如在线服务、大规模推理),依赖多GPU集群和分布式架构优化性能。

一句话总结

Ollama是“小而美”的本地化工具,vLLM是“大而强”的生产级方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值