vLLM 对本地模型多节点集群的支持说明及与ollama的对比

根据搜索结果,以下是关于 vLLM 多节点集群支持Ollama 单节点多 GPU 支持的详细分析:


1. vLLM 对多节点集群的支持

vLLM 支持多节点集群部署,但需结合特定技术(如 Ray 或管道并行)实现。以下是关键点:

(1) 分布式推理策略
  • 单节点多 GPU(张量并行):适用于模型无法单 GPU 运行但能放入单节点多 GPU 的场景。例如,8 卡节点运行 70B 模型时,设置 --tensor-parallel-size=8 即可67125
  • 多节点多 GPU(管道并行):当模型无法放入单个节点时,需结合张量并行(单节点内)和管道并行(跨节点)。例如,2 个节点各 8 卡,设置 --tensor-parallel-size=8 --pipeline-parallel-size=267125
(2) 技术实现
  • Ray 集群管理:vLLM 使用 Ray 或原生多进程管理分布式运行时。多节点部署需通过 run_cluster.sh 脚本启动容器集群,并确保节点间网络高效(如 Infiniband)6770
  • 通信优化:跨节点需配置 NCCL 参数(如 NCCL_SOCKET_IFNAME)和高速网卡,避免因网络延迟导致性能下降6774
(3) 限制
  • 测试版功能:管道并行目前仅支持部分模型(如 LLaMa、Qwen2),且需手动处理节点间环境一致性(如模型路径、Python 版本)6774
  • 复杂性:多节点部署需处理 Docker 容器、Ray 集群状态监控和防火墙配置,对运维要求较高7491

2. Ollama 对单节点多 GPU 的支持

Ollama 支持单节点多 GPU,但需手动配置环境变量,且存在一定限制:

(1) 多 GPU 使用方式
  • 环境变量指定 GPU:通过 CUDA_VISIBLE_DEVICES 指定 GPU 索引,例如 export CUDA_VISIBLE_DEVICES=0,1,2,3 启用 4 卡101105
  • 模型分片:大型模型(如 DeepSeek 70B)默认无法单卡运行,需通过 OLLAMA_GPU_LAYERS 参数分配模型层数到多卡,例如设置 OLLAMA_GPU_LAYERS=35 分片至多卡22105
(2) 性能与限制
  • 负载均衡不足:Ollama 在多卡场景下通常仅利用单卡计算,无法自动分配任务至多卡,需依赖外部工具(如 accelerate 库)手动优化9726
  • 显存瓶颈:即使启用多卡,显存占用可能仍不均衡。例如,加载 72B 模型时可能因显存不足报错 No available memory for the cache blocks,需降低 gpu_memory_utilization 或启用量化2097
(3) 实际部署案例
  • 脚本示例:通过启动脚本指定多卡并暴露服务,例如在 Linux 单节点部署 DeepSeek 模型时,设置 CUDA_VISIBLE_DEVICES=0,1,2,3 并启动 Ollama 服务101
  • 兼容性问题:AMD GPU 和部分旧 NVIDIA 显卡可能无法支持2230

总结

框架多节点集群支持单节点多 GPU 支持适用场景
vLLM✅(需 Ray/管道并行)✅(张量并行优化)高吞吐推理、企业级多节点部署
Ollama✅(需手动配置)轻量级本地部署、开发者调试
  • vLLM 推荐场景:需跨节点扩展或极致性能(如千亿级模型推理)时选择67125
  • Ollama 推荐场景:快速本地测试或资源有限的小规模应用30101
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值