根据搜索结果,以下是关于 vLLM 多节点集群支持和 Ollama 单节点多 GPU 支持的详细分析:
1. vLLM 对多节点集群的支持
vLLM 支持多节点集群部署,但需结合特定技术(如 Ray 或管道并行)实现。以下是关键点:
(1) 分布式推理策略
- 单节点多 GPU(张量并行):适用于模型无法单 GPU 运行但能放入单节点多 GPU 的场景。例如,8 卡节点运行 70B 模型时,设置
--tensor-parallel-size=8
即可67125。 - 多节点多 GPU(管道并行):当模型无法放入单个节点时,需结合张量并行(单节点内)和管道并行(跨节点)。例如,2 个节点各 8 卡,设置
--tensor-parallel-size=8 --pipeline-parallel-size=2
67125。
(2) 技术实现
- Ray 集群管理:vLLM 使用 Ray 或原生多进程管理分布式运行时。多节点部署需通过
run_cluster.sh
脚本启动容器集群,并确保节点间网络高效(如 Infiniband)6770。 - 通信优化:跨节点需配置 NCCL 参数(如
NCCL_SOCKET_IFNAME
)和高速网卡,避免因网络延迟导致性能下降6774。
(3) 限制
- 测试版功能:管道并行目前仅支持部分模型(如 LLaMa、Qwen2),且需手动处理节点间环境一致性(如模型路径、Python 版本)6774。
- 复杂性:多节点部署需处理 Docker 容器、Ray 集群状态监控和防火墙配置,对运维要求较高7491。
2. Ollama 对单节点多 GPU 的支持
Ollama 支持单节点多 GPU,但需手动配置环境变量,且存在一定限制:
(1) 多 GPU 使用方式
- 环境变量指定 GPU:通过
CUDA_VISIBLE_DEVICES
指定 GPU 索引,例如export CUDA_VISIBLE_DEVICES=0,1,2,3
启用 4 卡101105。 - 模型分片:大型模型(如 DeepSeek 70B)默认无法单卡运行,需通过
OLLAMA_GPU_LAYERS
参数分配模型层数到多卡,例如设置OLLAMA_GPU_LAYERS=35
分片至多卡22105。
(2) 性能与限制
- 负载均衡不足:Ollama 在多卡场景下通常仅利用单卡计算,无法自动分配任务至多卡,需依赖外部工具(如
accelerate
库)手动优化9726。 - 显存瓶颈:即使启用多卡,显存占用可能仍不均衡。例如,加载 72B 模型时可能因显存不足报错
No available memory for the cache blocks
,需降低gpu_memory_utilization
或启用量化2097。
(3) 实际部署案例
- 脚本示例:通过启动脚本指定多卡并暴露服务,例如在 Linux 单节点部署 DeepSeek 模型时,设置
CUDA_VISIBLE_DEVICES=0,1,2,3
并启动 Ollama 服务101。 - 兼容性问题:AMD GPU 和部分旧 NVIDIA 显卡可能无法支持2230。
总结
框架 | 多节点集群支持 | 单节点多 GPU 支持 | 适用场景 |
---|---|---|---|
vLLM | ✅(需 Ray/管道并行) | ✅(张量并行优化) | 高吞吐推理、企业级多节点部署 |
Ollama | ❌ | ✅(需手动配置) | 轻量级本地部署、开发者调试 |