深入浅出之CBR模块、CBL模块、CBM和CBS模块(YOLO)

在YOLOv4中,CBM和CBL是构成其网络结构的基本组件,它们各自承担着不同的角色和功能。

一、CBR模块

YOLO系列模型中的CBR模块,虽然在YOLOv6的官方文档或常见实现中不直接以“CBR”这一名称出现,但我们可以理解为它代表了一种常见的卷积模块结构,即卷积层(Convolutional Layer,Conv)-> 批归一化层(Batch Normalization Layer,BN)-> 激活函数层(ReLU或其他激活函数)。这种模块结构在YOLO系列的多个版本中都有所应用,并在特征提取和模型训练过程中发挥着重要作用。

CBR模块组成

  • 卷积层(Conv):负责从输入

### YOLOv5 中 CBS 模块的应用及实现 #### 1. CBS 模块概述 CBS(Convolution-BatchNorm-SiLU)模块YOLO系列模型中常用的基础构建块之一。该模块由卷积层、批归一化层以及SiLU激活函数组成,旨在简化网络设计并提升性能[^1]。 #### 2. 在 YOLOv5 中的作用 在YOLOv5里,CBS模块被广泛应用于各个部分以增强特征提取能力。具体来说: - **骨干网**:用于从输入图片中抽取低级到高级的不同层次特征; - **颈部结构**:连接骨干网与头部组件之间,负责融合多尺度信息; - **预测头**:最终生成边界框坐标及其类别概率分布。 这些地方都依赖于高效的轻量级子模块CBS来保持良好的速度准确性平衡[^2]。 #### 3. 实现方式 以下是基于PyTorch框架下定义的一个简单版本的`CBSModule`类,展示了如何创建这样一个功能性的组件: ```python import torch.nn as nn class CBSModule(nn.Module): """A Convolutional Block with Batch Normalization and SiLU activation function.""" def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, groups=1): super(CBSModule, self).__init__() # Calculate padding automatically based on the given parameters. if not padding: padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.SiLU(inplace=True) def forward(self, x): return self.act(self.bn(self.conv(x))) ``` 上述代码片段实现了最基本的CBS模块逻辑,其中包含了卷积操作(`nn.Conv2d`)、批量标准化处理(`nn.BatchNorm2d`)以及使用Silu作为非线性变换(`nn.SiLU`)。这种组合能够有效地促进梯度传播的同时也增加了模型的表现力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值